Solve for y
y=\frac{1}{2}=0.5
y=0
Graph
Share
Copied to clipboard
y\left(4y-2\right)=0
Factor out y.
y=0 y=\frac{1}{2}
To find equation solutions, solve y=0 and 4y-2=0.
4y^{2}-2y=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-2\right)±2}{2\times 4}
Take the square root of \left(-2\right)^{2}.
y=\frac{2±2}{2\times 4}
The opposite of -2 is 2.
y=\frac{2±2}{8}
Multiply 2 times 4.
y=\frac{4}{8}
Now solve the equation y=\frac{2±2}{8} when ± is plus. Add 2 to 2.
y=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
y=\frac{0}{8}
Now solve the equation y=\frac{2±2}{8} when ± is minus. Subtract 2 from 2.
y=0
Divide 0 by 8.
y=\frac{1}{2} y=0
The equation is now solved.
4y^{2}-2y=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4y^{2}-2y}{4}=\frac{0}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{2}{4}\right)y=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-\frac{1}{2}y=\frac{0}{4}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{1}{2}y=0
Divide 0 by 4.
y^{2}-\frac{1}{2}y+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{1}{2}y+\frac{1}{16}=\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(y-\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor y^{2}-\frac{1}{2}y+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
y-\frac{1}{4}=\frac{1}{4} y-\frac{1}{4}=-\frac{1}{4}
Simplify.
y=\frac{1}{2} y=0
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}