Solve for y
y=\frac{\sqrt{410}}{2}-3\approx 7.124228366
y=-\frac{\sqrt{410}}{2}-3\approx -13.124228366
Graph
Share
Copied to clipboard
4y^{2}+24y-374=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-24±\sqrt{24^{2}-4\times 4\left(-374\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 24 for b, and -374 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\times 4\left(-374\right)}}{2\times 4}
Square 24.
y=\frac{-24±\sqrt{576-16\left(-374\right)}}{2\times 4}
Multiply -4 times 4.
y=\frac{-24±\sqrt{576+5984}}{2\times 4}
Multiply -16 times -374.
y=\frac{-24±\sqrt{6560}}{2\times 4}
Add 576 to 5984.
y=\frac{-24±4\sqrt{410}}{2\times 4}
Take the square root of 6560.
y=\frac{-24±4\sqrt{410}}{8}
Multiply 2 times 4.
y=\frac{4\sqrt{410}-24}{8}
Now solve the equation y=\frac{-24±4\sqrt{410}}{8} when ± is plus. Add -24 to 4\sqrt{410}.
y=\frac{\sqrt{410}}{2}-3
Divide -24+4\sqrt{410} by 8.
y=\frac{-4\sqrt{410}-24}{8}
Now solve the equation y=\frac{-24±4\sqrt{410}}{8} when ± is minus. Subtract 4\sqrt{410} from -24.
y=-\frac{\sqrt{410}}{2}-3
Divide -24-4\sqrt{410} by 8.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
The equation is now solved.
4y^{2}+24y-374=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4y^{2}+24y-374-\left(-374\right)=-\left(-374\right)
Add 374 to both sides of the equation.
4y^{2}+24y=-\left(-374\right)
Subtracting -374 from itself leaves 0.
4y^{2}+24y=374
Subtract -374 from 0.
\frac{4y^{2}+24y}{4}=\frac{374}{4}
Divide both sides by 4.
y^{2}+\frac{24}{4}y=\frac{374}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}+6y=\frac{374}{4}
Divide 24 by 4.
y^{2}+6y=\frac{187}{2}
Reduce the fraction \frac{374}{4} to lowest terms by extracting and canceling out 2.
y^{2}+6y+3^{2}=\frac{187}{2}+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+6y+9=\frac{187}{2}+9
Square 3.
y^{2}+6y+9=\frac{205}{2}
Add \frac{187}{2} to 9.
\left(y+3\right)^{2}=\frac{205}{2}
Factor y^{2}+6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+3\right)^{2}}=\sqrt{\frac{205}{2}}
Take the square root of both sides of the equation.
y+3=\frac{\sqrt{410}}{2} y+3=-\frac{\sqrt{410}}{2}
Simplify.
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
Subtract 3 from both sides of the equation.
x ^ 2 +6x -\frac{187}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -6 rs = -\frac{187}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -3 - u s = -3 + u
Two numbers r and s sum up to -6 exactly when the average of the two numbers is \frac{1}{2}*-6 = -3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-3 - u) (-3 + u) = -\frac{187}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{187}{2}
9 - u^2 = -\frac{187}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{187}{2}-9 = -\frac{205}{2}
Simplify the expression by subtracting 9 on both sides
u^2 = \frac{205}{2} u = \pm\sqrt{\frac{205}{2}} = \pm \frac{\sqrt{205}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-3 - \frac{\sqrt{205}}{\sqrt{2}} = -13.124 s = -3 + \frac{\sqrt{205}}{\sqrt{2}} = 7.124
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}