Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(y+3y^{2}\right)
Factor out 4.
y\left(1+3y\right)
Consider y+3y^{2}. Factor out y.
4y\left(3y+1\right)
Rewrite the complete factored expression.
12y^{2}+4y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-4±\sqrt{4^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±4}{2\times 12}
Take the square root of 4^{2}.
y=\frac{-4±4}{24}
Multiply 2 times 12.
y=\frac{0}{24}
Now solve the equation y=\frac{-4±4}{24} when ± is plus. Add -4 to 4.
y=0
Divide 0 by 24.
y=-\frac{8}{24}
Now solve the equation y=\frac{-4±4}{24} when ± is minus. Subtract 4 from -4.
y=-\frac{1}{3}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
12y^{2}+4y=12y\left(y-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{3} for x_{2}.
12y^{2}+4y=12y\left(y+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12y^{2}+4y=12y\times \frac{3y+1}{3}
Add \frac{1}{3} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12y^{2}+4y=4y\left(3y+1\right)
Cancel out 3, the greatest common factor in 12 and 3.