Solve for y
y=\frac{\sqrt{22}-4}{3}\approx 0.230138587
y=\frac{-\sqrt{22}-4}{3}\approx -2.896805253
Graph
Share
Copied to clipboard
\frac{3}{2}y^{2}+4y-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±\sqrt{4^{2}-4\times \frac{3}{2}\left(-1\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times \frac{3}{2}\left(-1\right)}}{2\times \frac{3}{2}}
Square 4.
y=\frac{-4±\sqrt{16-6\left(-1\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
y=\frac{-4±\sqrt{16+6}}{2\times \frac{3}{2}}
Multiply -6 times -1.
y=\frac{-4±\sqrt{22}}{2\times \frac{3}{2}}
Add 16 to 6.
y=\frac{-4±\sqrt{22}}{3}
Multiply 2 times \frac{3}{2}.
y=\frac{\sqrt{22}-4}{3}
Now solve the equation y=\frac{-4±\sqrt{22}}{3} when ± is plus. Add -4 to \sqrt{22}.
y=\frac{-\sqrt{22}-4}{3}
Now solve the equation y=\frac{-4±\sqrt{22}}{3} when ± is minus. Subtract \sqrt{22} from -4.
y=\frac{\sqrt{22}-4}{3} y=\frac{-\sqrt{22}-4}{3}
The equation is now solved.
\frac{3}{2}y^{2}+4y-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3}{2}y^{2}+4y-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
\frac{3}{2}y^{2}+4y=-\left(-1\right)
Subtracting -1 from itself leaves 0.
\frac{3}{2}y^{2}+4y=1
Subtract -1 from 0.
\frac{\frac{3}{2}y^{2}+4y}{\frac{3}{2}}=\frac{1}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{4}{\frac{3}{2}}y=\frac{1}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
y^{2}+\frac{8}{3}y=\frac{1}{\frac{3}{2}}
Divide 4 by \frac{3}{2} by multiplying 4 by the reciprocal of \frac{3}{2}.
y^{2}+\frac{8}{3}y=\frac{2}{3}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
y^{2}+\frac{8}{3}y+\left(\frac{4}{3}\right)^{2}=\frac{2}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{8}{3}y+\frac{16}{9}=\frac{2}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{8}{3}y+\frac{16}{9}=\frac{22}{9}
Add \frac{2}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{4}{3}\right)^{2}=\frac{22}{9}
Factor y^{2}+\frac{8}{3}y+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{4}{3}\right)^{2}}=\sqrt{\frac{22}{9}}
Take the square root of both sides of the equation.
y+\frac{4}{3}=\frac{\sqrt{22}}{3} y+\frac{4}{3}=-\frac{\sqrt{22}}{3}
Simplify.
y=\frac{\sqrt{22}-4}{3} y=\frac{-\sqrt{22}-4}{3}
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}