Factor
-4xy\left(3y-1\right)\left(y+1\right)
Evaluate
-4xy\left(3y-1\right)\left(y+1\right)
Share
Copied to clipboard
4\left(xy-2xy^{2}-3xy^{3}\right)
Factor out 4.
xy\left(1-2y-3y^{2}\right)
Consider xy-2xy^{2}-3xy^{3}. Factor out xy.
-3y^{2}-2y+1
Consider 1-2y-3y^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-3=-3
Factor the expression by grouping. First, the expression needs to be rewritten as -3y^{2}+ay+by+1. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-3y^{2}+y\right)+\left(-3y+1\right)
Rewrite -3y^{2}-2y+1 as \left(-3y^{2}+y\right)+\left(-3y+1\right).
-y\left(3y-1\right)-\left(3y-1\right)
Factor out -y in the first and -1 in the second group.
\left(3y-1\right)\left(-y-1\right)
Factor out common term 3y-1 by using distributive property.
4xy\left(3y-1\right)\left(-y-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}