Solve for x
x=\frac{9y}{4}+\frac{3}{2}
Solve for y
y=\frac{4x}{9}-\frac{2}{3}
Graph
Share
Copied to clipboard
4x-6=9y
Add 9y to both sides. Anything plus zero gives itself.
4x=9y+6
Add 6 to both sides.
\frac{4x}{4}=\frac{9y+6}{4}
Divide both sides by 4.
x=\frac{9y+6}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{9y}{4}+\frac{3}{2}
Divide 9y+6 by 4.
-9y-6=-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
-9y=-4x+6
Add 6 to both sides.
-9y=6-4x
The equation is in standard form.
\frac{-9y}{-9}=\frac{6-4x}{-9}
Divide both sides by -9.
y=\frac{6-4x}{-9}
Dividing by -9 undoes the multiplication by -9.
y=\frac{4x}{9}-\frac{2}{3}
Divide -4x+6 by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}