Solve for x
x=4
Graph
Share
Copied to clipboard
-4\sqrt{x}=8-4x
Subtract 4x from both sides of the equation.
\left(-4\sqrt{x}\right)^{2}=\left(8-4x\right)^{2}
Square both sides of the equation.
\left(-4\right)^{2}\left(\sqrt{x}\right)^{2}=\left(8-4x\right)^{2}
Expand \left(-4\sqrt{x}\right)^{2}.
16\left(\sqrt{x}\right)^{2}=\left(8-4x\right)^{2}
Calculate -4 to the power of 2 and get 16.
16x=\left(8-4x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
16x=64-64x+16x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-4x\right)^{2}.
16x-64=-64x+16x^{2}
Subtract 64 from both sides.
16x-64+64x=16x^{2}
Add 64x to both sides.
80x-64=16x^{2}
Combine 16x and 64x to get 80x.
80x-64-16x^{2}=0
Subtract 16x^{2} from both sides.
-16x^{2}+80x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±\sqrt{80^{2}-4\left(-16\right)\left(-64\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 80 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-16\right)\left(-64\right)}}{2\left(-16\right)}
Square 80.
x=\frac{-80±\sqrt{6400+64\left(-64\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-80±\sqrt{6400-4096}}{2\left(-16\right)}
Multiply 64 times -64.
x=\frac{-80±\sqrt{2304}}{2\left(-16\right)}
Add 6400 to -4096.
x=\frac{-80±48}{2\left(-16\right)}
Take the square root of 2304.
x=\frac{-80±48}{-32}
Multiply 2 times -16.
x=-\frac{32}{-32}
Now solve the equation x=\frac{-80±48}{-32} when ± is plus. Add -80 to 48.
x=1
Divide -32 by -32.
x=-\frac{128}{-32}
Now solve the equation x=\frac{-80±48}{-32} when ± is minus. Subtract 48 from -80.
x=4
Divide -128 by -32.
x=1 x=4
The equation is now solved.
4\times 1-4\sqrt{1}=8
Substitute 1 for x in the equation 4x-4\sqrt{x}=8.
0=8
Simplify. The value x=1 does not satisfy the equation.
4\times 4-4\sqrt{4}=8
Substitute 4 for x in the equation 4x-4\sqrt{x}=8.
8=8
Simplify. The value x=4 satisfies the equation.
x=4
Equation -4\sqrt{x}=8-4x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}