Solve for a
a=\frac{14x-4}{5}
Solve for x
x=\frac{5a}{14}+\frac{2}{7}
Graph
Share
Copied to clipboard
4x-3+10x-5a=1
Use the distributive property to multiply 5 by 2x-a.
14x-3-5a=1
Combine 4x and 10x to get 14x.
-3-5a=1-14x
Subtract 14x from both sides.
-5a=1-14x+3
Add 3 to both sides.
-5a=4-14x
Add 1 and 3 to get 4.
\frac{-5a}{-5}=\frac{4-14x}{-5}
Divide both sides by -5.
a=\frac{4-14x}{-5}
Dividing by -5 undoes the multiplication by -5.
a=\frac{14x-4}{5}
Divide 4-14x by -5.
4x-3+10x-5a=1
Use the distributive property to multiply 5 by 2x-a.
14x-3-5a=1
Combine 4x and 10x to get 14x.
14x-5a=1+3
Add 3 to both sides.
14x-5a=4
Add 1 and 3 to get 4.
14x=4+5a
Add 5a to both sides.
14x=5a+4
The equation is in standard form.
\frac{14x}{14}=\frac{5a+4}{14}
Divide both sides by 14.
x=\frac{5a+4}{14}
Dividing by 14 undoes the multiplication by 14.
x=\frac{5a}{14}+\frac{2}{7}
Divide 4+5a by 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}