Solve for x
x=\frac{y}{4}-\frac{4}{5}
Solve for y
y=4x+\frac{16}{5}
Graph
Share
Copied to clipboard
160x-5\times 8y=-128
Multiply both sides of the equation by 40, the least common multiple of 8,5.
160x-40y=-128
Multiply -5 and 8 to get -40.
160x=-128+40y
Add 40y to both sides.
160x=40y-128
The equation is in standard form.
\frac{160x}{160}=\frac{40y-128}{160}
Divide both sides by 160.
x=\frac{40y-128}{160}
Dividing by 160 undoes the multiplication by 160.
x=\frac{y}{4}-\frac{4}{5}
Divide -128+40y by 160.
160x-5\times 8y=-128
Multiply both sides of the equation by 40, the least common multiple of 8,5.
160x-40y=-128
Multiply -5 and 8 to get -40.
-40y=-128-160x
Subtract 160x from both sides.
-40y=-160x-128
The equation is in standard form.
\frac{-40y}{-40}=\frac{-160x-128}{-40}
Divide both sides by -40.
y=\frac{-160x-128}{-40}
Dividing by -40 undoes the multiplication by -40.
y=4x+\frac{16}{5}
Divide -128-160x by -40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}