Solve for x
x<-\frac{1}{3}
Graph
Share
Copied to clipboard
4x-\frac{1}{3}<5-6+2x
Use the distributive property to multiply -2 by 3-x.
4x-\frac{1}{3}<-1+2x
Subtract 6 from 5 to get -1.
4x-\frac{1}{3}-2x<-1
Subtract 2x from both sides.
2x-\frac{1}{3}<-1
Combine 4x and -2x to get 2x.
2x<-1+\frac{1}{3}
Add \frac{1}{3} to both sides.
2x<-\frac{3}{3}+\frac{1}{3}
Convert -1 to fraction -\frac{3}{3}.
2x<\frac{-3+1}{3}
Since -\frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
2x<-\frac{2}{3}
Add -3 and 1 to get -2.
x<\frac{-\frac{2}{3}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x<\frac{-2}{3\times 2}
Express \frac{-\frac{2}{3}}{2} as a single fraction.
x<\frac{-2}{6}
Multiply 3 and 2 to get 6.
x<-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}