Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x-\left(7-x\right)=80
Use the distributive property to multiply 4x by x-3.
4x^{2}-12x-7-\left(-x\right)=80
To find the opposite of 7-x, find the opposite of each term.
4x^{2}-12x-7+x=80
The opposite of -x is x.
4x^{2}-11x-7=80
Combine -12x and x to get -11x.
4x^{2}-11x-7-80=0
Subtract 80 from both sides.
4x^{2}-11x-87=0
Subtract 80 from -7 to get -87.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-87\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -11 for b, and -87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 4\left(-87\right)}}{2\times 4}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-16\left(-87\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-11\right)±\sqrt{121+1392}}{2\times 4}
Multiply -16 times -87.
x=\frac{-\left(-11\right)±\sqrt{1513}}{2\times 4}
Add 121 to 1392.
x=\frac{11±\sqrt{1513}}{2\times 4}
The opposite of -11 is 11.
x=\frac{11±\sqrt{1513}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{1513}+11}{8}
Now solve the equation x=\frac{11±\sqrt{1513}}{8} when ± is plus. Add 11 to \sqrt{1513}.
x=\frac{11-\sqrt{1513}}{8}
Now solve the equation x=\frac{11±\sqrt{1513}}{8} when ± is minus. Subtract \sqrt{1513} from 11.
x=\frac{\sqrt{1513}+11}{8} x=\frac{11-\sqrt{1513}}{8}
The equation is now solved.
4x^{2}-12x-\left(7-x\right)=80
Use the distributive property to multiply 4x by x-3.
4x^{2}-12x-7-\left(-x\right)=80
To find the opposite of 7-x, find the opposite of each term.
4x^{2}-12x-7+x=80
The opposite of -x is x.
4x^{2}-11x-7=80
Combine -12x and x to get -11x.
4x^{2}-11x=80+7
Add 7 to both sides.
4x^{2}-11x=87
Add 80 and 7 to get 87.
\frac{4x^{2}-11x}{4}=\frac{87}{4}
Divide both sides by 4.
x^{2}-\frac{11}{4}x=\frac{87}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=\frac{87}{4}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{87}{4}+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{1513}{64}
Add \frac{87}{4} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{8}\right)^{2}=\frac{1513}{64}
Factor x^{2}-\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{\frac{1513}{64}}
Take the square root of both sides of the equation.
x-\frac{11}{8}=\frac{\sqrt{1513}}{8} x-\frac{11}{8}=-\frac{\sqrt{1513}}{8}
Simplify.
x=\frac{\sqrt{1513}+11}{8} x=\frac{11-\sqrt{1513}}{8}
Add \frac{11}{8} to both sides of the equation.