Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
4x^{2}-8x=5
Use the distributive property to multiply 4x by x-2.
4x^{2}-8x-5=0
Subtract 5 from both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-5\right)}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 4}
Multiply -16 times -5.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 4}
Add 64 to 80.
x=\frac{-\left(-8\right)±12}{2\times 4}
Take the square root of 144.
x=\frac{8±12}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±12}{8}
Multiply 2 times 4.
x=\frac{20}{8}
Now solve the equation x=\frac{8±12}{8} when ± is plus. Add 8 to 12.
x=\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{4}{8}
Now solve the equation x=\frac{8±12}{8} when ± is minus. Subtract 12 from 8.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=\frac{5}{2} x=-\frac{1}{2}
The equation is now solved.
4x^{2}-8x=5
Use the distributive property to multiply 4x by x-2.
\frac{4x^{2}-8x}{4}=\frac{5}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=\frac{5}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=\frac{5}{4}
Divide -8 by 4.
x^{2}-2x+1=\frac{5}{4}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{9}{4}
Add \frac{5}{4} to 1.
\left(x-1\right)^{2}=\frac{9}{4}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-1=\frac{3}{2} x-1=-\frac{3}{2}
Simplify.
x=\frac{5}{2} x=-\frac{1}{2}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}