Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+8x=25
Use the distributive property to multiply 4x by x+2.
4x^{2}+8x-25=0
Subtract 25 from both sides.
x=\frac{-8±\sqrt{8^{2}-4\times 4\left(-25\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 8 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\left(-25\right)}}{2\times 4}
Square 8.
x=\frac{-8±\sqrt{64-16\left(-25\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-8±\sqrt{64+400}}{2\times 4}
Multiply -16 times -25.
x=\frac{-8±\sqrt{464}}{2\times 4}
Add 64 to 400.
x=\frac{-8±4\sqrt{29}}{2\times 4}
Take the square root of 464.
x=\frac{-8±4\sqrt{29}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{29}-8}{8}
Now solve the equation x=\frac{-8±4\sqrt{29}}{8} when ± is plus. Add -8 to 4\sqrt{29}.
x=\frac{\sqrt{29}}{2}-1
Divide -8+4\sqrt{29} by 8.
x=\frac{-4\sqrt{29}-8}{8}
Now solve the equation x=\frac{-8±4\sqrt{29}}{8} when ± is minus. Subtract 4\sqrt{29} from -8.
x=-\frac{\sqrt{29}}{2}-1
Divide -8-4\sqrt{29} by 8.
x=\frac{\sqrt{29}}{2}-1 x=-\frac{\sqrt{29}}{2}-1
The equation is now solved.
4x^{2}+8x=25
Use the distributive property to multiply 4x by x+2.
\frac{4x^{2}+8x}{4}=\frac{25}{4}
Divide both sides by 4.
x^{2}+\frac{8}{4}x=\frac{25}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+2x=\frac{25}{4}
Divide 8 by 4.
x^{2}+2x+1^{2}=\frac{25}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{25}{4}+1
Square 1.
x^{2}+2x+1=\frac{29}{4}
Add \frac{25}{4} to 1.
\left(x+1\right)^{2}=\frac{29}{4}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{29}{4}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{29}}{2} x+1=-\frac{\sqrt{29}}{2}
Simplify.
x=\frac{\sqrt{29}}{2}-1 x=-\frac{\sqrt{29}}{2}-1
Subtract 1 from both sides of the equation.