4 x ( 1 + 4.8 \% ) ^ { t } = 19
Solve for x
x=\frac{19\times \frac{125}{131}^{t}}{4}
Solve for t (complex solution)
t=\frac{-\ln(x)+\ln(4.75)}{\ln(1.048)}+\frac{i\times 2\pi n_{1}}{\ln(1.048)}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for t
t=\frac{-\ln(x)+\ln(4.75)}{\ln(1.048)}
x>0
Graph
Share
Copied to clipboard
4x\left(1+\frac{48}{1000}\right)^{t}=19
Expand \frac{4.8}{100} by multiplying both numerator and the denominator by 10.
4x\left(1+\frac{6}{125}\right)^{t}=19
Reduce the fraction \frac{48}{1000} to lowest terms by extracting and canceling out 8.
4x\times \left(\frac{131}{125}\right)^{t}=19
Add 1 and \frac{6}{125} to get \frac{131}{125}.
4\times \left(\frac{131}{125}\right)^{t}x=19
The equation is in standard form.
\frac{4\times \left(\frac{131}{125}\right)^{t}x}{4\times \left(\frac{131}{125}\right)^{t}}=\frac{19}{4\times \left(\frac{131}{125}\right)^{t}}
Divide both sides by 4\times \left(\frac{131}{125}\right)^{t}.
x=\frac{19}{4\times \left(\frac{131}{125}\right)^{t}}
Dividing by 4\times \left(\frac{131}{125}\right)^{t} undoes the multiplication by 4\times \left(\frac{131}{125}\right)^{t}.
x=\frac{19\times \left(\frac{125}{131}\right)^{t}}{4}
Divide 19 by 4\times \left(\frac{131}{125}\right)^{t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}