Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x\times \frac{3}{2}x-20x-\left(\frac{3}{2}x-5\right)
Use the distributive property to multiply 4x by \frac{3}{2}x-5.
4x^{2}\times \frac{3}{2}-20x-\left(\frac{3}{2}x-5\right)
Multiply x and x to get x^{2}.
\frac{4\times 3}{2}x^{2}-20x-\left(\frac{3}{2}x-5\right)
Express 4\times \frac{3}{2} as a single fraction.
\frac{12}{2}x^{2}-20x-\left(\frac{3}{2}x-5\right)
Multiply 4 and 3 to get 12.
6x^{2}-20x-\left(\frac{3}{2}x-5\right)
Divide 12 by 2 to get 6.
6x^{2}-20x-\frac{3}{2}x-\left(-5\right)
To find the opposite of \frac{3}{2}x-5, find the opposite of each term.
6x^{2}-20x-\frac{3}{2}x+5
The opposite of -5 is 5.
6x^{2}-\frac{43}{2}x+5
Combine -20x and -\frac{3}{2}x to get -\frac{43}{2}x.
4x\times \frac{3}{2}x-20x-\left(\frac{3}{2}x-5\right)
Use the distributive property to multiply 4x by \frac{3}{2}x-5.
4x^{2}\times \frac{3}{2}-20x-\left(\frac{3}{2}x-5\right)
Multiply x and x to get x^{2}.
\frac{4\times 3}{2}x^{2}-20x-\left(\frac{3}{2}x-5\right)
Express 4\times \frac{3}{2} as a single fraction.
\frac{12}{2}x^{2}-20x-\left(\frac{3}{2}x-5\right)
Multiply 4 and 3 to get 12.
6x^{2}-20x-\left(\frac{3}{2}x-5\right)
Divide 12 by 2 to get 6.
6x^{2}-20x-\frac{3}{2}x-\left(-5\right)
To find the opposite of \frac{3}{2}x-5, find the opposite of each term.
6x^{2}-20x-\frac{3}{2}x+5
The opposite of -5 is 5.
6x^{2}-\frac{43}{2}x+5
Combine -20x and -\frac{3}{2}x to get -\frac{43}{2}x.