Evaluate
x\left(x+1\right)\left(4x^{2}-6x+3\right)
Factor
x\left(x+1\right)\left(4x^{2}-6x+3\right)
Graph
Share
Copied to clipboard
4x^{4}-2x^{3}-6x^{2}+2x+3x^{2}+x
Divide 6 by 2 to get 3.
4x^{4}-2x^{3}-3x^{2}+2x+x
Combine -6x^{2} and 3x^{2} to get -3x^{2}.
4x^{4}-2x^{3}-3x^{2}+3x
Combine 2x and x to get 3x.
x\left(4x^{3}-2x^{2}-3x+3\right)
Factor out x.
4x^{3}-2x^{2}-3x+3
Consider 4x^{3}-2x^{2}-6x+2+3x+1. Multiply and combine like terms.
\left(x+1\right)\left(4x^{2}-6x+3\right)
Consider 4x^{3}-2x^{2}-3x+3. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 3 and q divides the leading coefficient 4. One such root is -1. Factor the polynomial by dividing it by x+1.
x\left(x+1\right)\left(4x^{2}-6x+3\right)
Rewrite the complete factored expression. Polynomial 4x^{2}-6x+3 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}