Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{14x+b-40}{2x-5}\text{, }&x\neq \frac{5}{2}\\a\in \mathrm{C}\text{, }&x=\frac{5}{2}\text{ and }b=5\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{14x+b-40}{2x-5}\text{, }&x\neq \frac{5}{2}\\a\in \mathrm{R}\text{, }&x=\frac{5}{2}\text{ and }b=5\end{matrix}\right.
Solve for b
b=40+5a-14x-2ax
Graph
Share
Copied to clipboard
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
4x^{3}+ax^{2}+18x+b-x^{2}a=4x^{3}-2xa+4x+5a+40
Subtract x^{2}a from both sides.
4x^{3}+18x+b=4x^{3}-2xa+4x+5a+40
Combine ax^{2} and -x^{2}a to get 0.
4x^{3}-2xa+4x+5a+40=4x^{3}+18x+b
Swap sides so that all variable terms are on the left hand side.
-2xa+4x+5a+40=4x^{3}+18x+b-4x^{3}
Subtract 4x^{3} from both sides.
-2xa+4x+5a+40=18x+b
Combine 4x^{3} and -4x^{3} to get 0.
-2xa+5a+40=18x+b-4x
Subtract 4x from both sides.
-2xa+5a+40=14x+b
Combine 18x and -4x to get 14x.
-2xa+5a=14x+b-40
Subtract 40 from both sides.
\left(-2x+5\right)a=14x+b-40
Combine all terms containing a.
\left(5-2x\right)a=14x+b-40
The equation is in standard form.
\frac{\left(5-2x\right)a}{5-2x}=\frac{14x+b-40}{5-2x}
Divide both sides by -2x+5.
a=\frac{14x+b-40}{5-2x}
Dividing by -2x+5 undoes the multiplication by -2x+5.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
4x^{3}+ax^{2}+18x+b-x^{2}a=4x^{3}-2xa+4x+5a+40
Subtract x^{2}a from both sides.
4x^{3}+18x+b=4x^{3}-2xa+4x+5a+40
Combine ax^{2} and -x^{2}a to get 0.
4x^{3}-2xa+4x+5a+40=4x^{3}+18x+b
Swap sides so that all variable terms are on the left hand side.
-2xa+4x+5a+40=4x^{3}+18x+b-4x^{3}
Subtract 4x^{3} from both sides.
-2xa+4x+5a+40=18x+b
Combine 4x^{3} and -4x^{3} to get 0.
-2xa+5a+40=18x+b-4x
Subtract 4x from both sides.
-2xa+5a+40=14x+b
Combine 18x and -4x to get 14x.
-2xa+5a=14x+b-40
Subtract 40 from both sides.
\left(-2x+5\right)a=14x+b-40
Combine all terms containing a.
\left(5-2x\right)a=14x+b-40
The equation is in standard form.
\frac{\left(5-2x\right)a}{5-2x}=\frac{14x+b-40}{5-2x}
Divide both sides by -2x+5.
a=\frac{14x+b-40}{5-2x}
Dividing by -2x+5 undoes the multiplication by -2x+5.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40-4x^{3}
Subtract 4x^{3} from both sides.
ax^{2}+18x+b=x^{2}a-2xa+4x+5a+40
Combine 4x^{3} and -4x^{3} to get 0.
18x+b=x^{2}a-2xa+4x+5a+40-ax^{2}
Subtract ax^{2} from both sides.
18x+b=-2xa+4x+5a+40
Combine x^{2}a and -ax^{2} to get 0.
b=-2xa+4x+5a+40-18x
Subtract 18x from both sides.
b=-2xa-14x+5a+40
Combine 4x and -18x to get -14x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}