Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
4x^{3}+ax^{2}+18x+b-x^{2}a=4x^{3}-2xa+4x+5a+40
Subtract x^{2}a from both sides.
4x^{3}+18x+b=4x^{3}-2xa+4x+5a+40
Combine ax^{2} and -x^{2}a to get 0.
4x^{3}-2xa+4x+5a+40=4x^{3}+18x+b
Swap sides so that all variable terms are on the left hand side.
-2xa+4x+5a+40=4x^{3}+18x+b-4x^{3}
Subtract 4x^{3} from both sides.
-2xa+4x+5a+40=18x+b
Combine 4x^{3} and -4x^{3} to get 0.
-2xa+5a+40=18x+b-4x
Subtract 4x from both sides.
-2xa+5a+40=14x+b
Combine 18x and -4x to get 14x.
-2xa+5a=14x+b-40
Subtract 40 from both sides.
\left(-2x+5\right)a=14x+b-40
Combine all terms containing a.
\left(5-2x\right)a=14x+b-40
The equation is in standard form.
\frac{\left(5-2x\right)a}{5-2x}=\frac{14x+b-40}{5-2x}
Divide both sides by -2x+5.
a=\frac{14x+b-40}{5-2x}
Dividing by -2x+5 undoes the multiplication by -2x+5.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
4x^{3}+ax^{2}+18x+b-x^{2}a=4x^{3}-2xa+4x+5a+40
Subtract x^{2}a from both sides.
4x^{3}+18x+b=4x^{3}-2xa+4x+5a+40
Combine ax^{2} and -x^{2}a to get 0.
4x^{3}-2xa+4x+5a+40=4x^{3}+18x+b
Swap sides so that all variable terms are on the left hand side.
-2xa+4x+5a+40=4x^{3}+18x+b-4x^{3}
Subtract 4x^{3} from both sides.
-2xa+4x+5a+40=18x+b
Combine 4x^{3} and -4x^{3} to get 0.
-2xa+5a+40=18x+b-4x
Subtract 4x from both sides.
-2xa+5a+40=14x+b
Combine 18x and -4x to get 14x.
-2xa+5a=14x+b-40
Subtract 40 from both sides.
\left(-2x+5\right)a=14x+b-40
Combine all terms containing a.
\left(5-2x\right)a=14x+b-40
The equation is in standard form.
\frac{\left(5-2x\right)a}{5-2x}=\frac{14x+b-40}{5-2x}
Divide both sides by -2x+5.
a=\frac{14x+b-40}{5-2x}
Dividing by -2x+5 undoes the multiplication by -2x+5.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa-4x+3a+24+8x+16+2a
Use the distributive property to multiply x^{2}-2x+3 by 4x+a+8 and combine like terms.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+24+16+2a
Combine -4x and 8x to get 4x.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+3a+40+2a
Add 24 and 16 to get 40.
4x^{3}+ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40
Combine 3a and 2a to get 5a.
ax^{2}+18x+b=4x^{3}+x^{2}a-2xa+4x+5a+40-4x^{3}
Subtract 4x^{3} from both sides.
ax^{2}+18x+b=x^{2}a-2xa+4x+5a+40
Combine 4x^{3} and -4x^{3} to get 0.
18x+b=x^{2}a-2xa+4x+5a+40-ax^{2}
Subtract ax^{2} from both sides.
18x+b=-2xa+4x+5a+40
Combine x^{2}a and -ax^{2} to get 0.
b=-2xa+4x+5a+40-18x
Subtract 18x from both sides.
b=-2xa-14x+5a+40
Combine 4x and -18x to get -14x.