Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-11x^{2}-9+11+11x
Combine 4x^{2} and -15x^{2} to get -11x^{2}.
-11x^{2}+2+11x
Add -9 and 11 to get 2.
factor(-11x^{2}-9+11+11x)
Combine 4x^{2} and -15x^{2} to get -11x^{2}.
factor(-11x^{2}+2+11x)
Add -9 and 11 to get 2.
-11x^{2}+11x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\left(-11\right)\times 2}}{2\left(-11\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\left(-11\right)\times 2}}{2\left(-11\right)}
Square 11.
x=\frac{-11±\sqrt{121+44\times 2}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-11±\sqrt{121+88}}{2\left(-11\right)}
Multiply 44 times 2.
x=\frac{-11±\sqrt{209}}{2\left(-11\right)}
Add 121 to 88.
x=\frac{-11±\sqrt{209}}{-22}
Multiply 2 times -11.
x=\frac{\sqrt{209}-11}{-22}
Now solve the equation x=\frac{-11±\sqrt{209}}{-22} when ± is plus. Add -11 to \sqrt{209}.
x=-\frac{\sqrt{209}}{22}+\frac{1}{2}
Divide -11+\sqrt{209} by -22.
x=\frac{-\sqrt{209}-11}{-22}
Now solve the equation x=\frac{-11±\sqrt{209}}{-22} when ± is minus. Subtract \sqrt{209} from -11.
x=\frac{\sqrt{209}}{22}+\frac{1}{2}
Divide -11-\sqrt{209} by -22.
-11x^{2}+11x+2=-11\left(x-\left(-\frac{\sqrt{209}}{22}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{209}}{22}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}-\frac{\sqrt{209}}{22} for x_{1} and \frac{1}{2}+\frac{\sqrt{209}}{22} for x_{2}.