Solve for x (complex solution)
x=\frac{6}{5}-\frac{3}{5}i=1.2-0.6i
x=\frac{6}{5}+\frac{3}{5}i=1.2+0.6i
Graph
Share
Copied to clipboard
4x^{2}-9-9x^{2}=-12x
Subtract 9x^{2} from both sides.
-5x^{2}-9=-12x
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}-9+12x=0
Add 12x to both sides.
-5x^{2}+12x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-5\right)\left(-9\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 12 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-5\right)\left(-9\right)}}{2\left(-5\right)}
Square 12.
x=\frac{-12±\sqrt{144+20\left(-9\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-12±\sqrt{144-180}}{2\left(-5\right)}
Multiply 20 times -9.
x=\frac{-12±\sqrt{-36}}{2\left(-5\right)}
Add 144 to -180.
x=\frac{-12±6i}{2\left(-5\right)}
Take the square root of -36.
x=\frac{-12±6i}{-10}
Multiply 2 times -5.
x=\frac{-12+6i}{-10}
Now solve the equation x=\frac{-12±6i}{-10} when ± is plus. Add -12 to 6i.
x=\frac{6}{5}-\frac{3}{5}i
Divide -12+6i by -10.
x=\frac{-12-6i}{-10}
Now solve the equation x=\frac{-12±6i}{-10} when ± is minus. Subtract 6i from -12.
x=\frac{6}{5}+\frac{3}{5}i
Divide -12-6i by -10.
x=\frac{6}{5}-\frac{3}{5}i x=\frac{6}{5}+\frac{3}{5}i
The equation is now solved.
4x^{2}-9-9x^{2}=-12x
Subtract 9x^{2} from both sides.
-5x^{2}-9=-12x
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}-9+12x=0
Add 12x to both sides.
-5x^{2}+12x=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{-5x^{2}+12x}{-5}=\frac{9}{-5}
Divide both sides by -5.
x^{2}+\frac{12}{-5}x=\frac{9}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{12}{5}x=\frac{9}{-5}
Divide 12 by -5.
x^{2}-\frac{12}{5}x=-\frac{9}{5}
Divide 9 by -5.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=-\frac{9}{5}+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{9}{5}+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{5}x+\frac{36}{25}=-\frac{9}{25}
Add -\frac{9}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6}{5}\right)^{2}=-\frac{9}{25}
Factor x^{2}-\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{-\frac{9}{25}}
Take the square root of both sides of the equation.
x-\frac{6}{5}=\frac{3}{5}i x-\frac{6}{5}=-\frac{3}{5}i
Simplify.
x=\frac{6}{5}+\frac{3}{5}i x=\frac{6}{5}-\frac{3}{5}i
Add \frac{6}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}