Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-8x=170
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-8x-170=170-170
Subtract 170 from both sides of the equation.
4x^{2}-8x-170=0
Subtracting 170 from itself leaves 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-170\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and -170 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\left(-170\right)}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\left(-170\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64+2720}}{2\times 4}
Multiply -16 times -170.
x=\frac{-\left(-8\right)±\sqrt{2784}}{2\times 4}
Add 64 to 2720.
x=\frac{-\left(-8\right)±4\sqrt{174}}{2\times 4}
Take the square root of 2784.
x=\frac{8±4\sqrt{174}}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{174}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{174}+8}{8}
Now solve the equation x=\frac{8±4\sqrt{174}}{8} when ± is plus. Add 8 to 4\sqrt{174}.
x=\frac{\sqrt{174}}{2}+1
Divide 8+4\sqrt{174} by 8.
x=\frac{8-4\sqrt{174}}{8}
Now solve the equation x=\frac{8±4\sqrt{174}}{8} when ± is minus. Subtract 4\sqrt{174} from 8.
x=-\frac{\sqrt{174}}{2}+1
Divide 8-4\sqrt{174} by 8.
x=\frac{\sqrt{174}}{2}+1 x=-\frac{\sqrt{174}}{2}+1
The equation is now solved.
4x^{2}-8x=170
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-8x}{4}=\frac{170}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=\frac{170}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=\frac{170}{4}
Divide -8 by 4.
x^{2}-2x=\frac{85}{2}
Reduce the fraction \frac{170}{4} to lowest terms by extracting and canceling out 2.
x^{2}-2x+1=\frac{85}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{87}{2}
Add \frac{85}{2} to 1.
\left(x-1\right)^{2}=\frac{87}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{87}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{174}}{2} x-1=-\frac{\sqrt{174}}{2}
Simplify.
x=\frac{\sqrt{174}}{2}+1 x=-\frac{\sqrt{174}}{2}+1
Add 1 to both sides of the equation.