Solve for x
x=\frac{1}{2}=0.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
4x^{2}-8x+12-9=0
Subtract 9 from both sides.
4x^{2}-8x+3=0
Subtract 9 from 12 to get 3.
a+b=-8 ab=4\times 3=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-6 b=-2
The solution is the pair that gives sum -8.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
Rewrite 4x^{2}-8x+3 as \left(4x^{2}-6x\right)+\left(-2x+3\right).
2x\left(2x-3\right)-\left(2x-3\right)
Factor out 2x in the first and -1 in the second group.
\left(2x-3\right)\left(2x-1\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=\frac{1}{2}
To find equation solutions, solve 2x-3=0 and 2x-1=0.
4x^{2}-8x+12=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-8x+12-9=9-9
Subtract 9 from both sides of the equation.
4x^{2}-8x+12-9=0
Subtracting 9 from itself leaves 0.
4x^{2}-8x+3=0
Subtract 9 from 12.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
Multiply -16 times 3.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
Add 64 to -48.
x=\frac{-\left(-8\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{8±4}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±4}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{8±4}{8} when ± is plus. Add 8 to 4.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{4}{8}
Now solve the equation x=\frac{8±4}{8} when ± is minus. Subtract 4 from 8.
x=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=\frac{1}{2}
The equation is now solved.
4x^{2}-8x+12=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-8x+12-12=9-12
Subtract 12 from both sides of the equation.
4x^{2}-8x=9-12
Subtracting 12 from itself leaves 0.
4x^{2}-8x=-3
Subtract 12 from 9.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=-\frac{3}{4}
Divide -8 by 4.
x^{2}-2x+1=-\frac{3}{4}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{1}{4}
Add -\frac{3}{4} to 1.
\left(x-1\right)^{2}=\frac{1}{4}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
Simplify.
x=\frac{3}{2} x=\frac{1}{2}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}