Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-6x+13=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-6x+13-1=1-1
Subtract 1 from both sides of the equation.
4x^{2}-6x+13-1=0
Subtracting 1 from itself leaves 0.
4x^{2}-6x+12=0
Subtract 1 from 13.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\times 12}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4\times 12}}{2\times 4}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-16\times 12}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-6\right)±\sqrt{36-192}}{2\times 4}
Multiply -16 times 12.
x=\frac{-\left(-6\right)±\sqrt{-156}}{2\times 4}
Add 36 to -192.
x=\frac{-\left(-6\right)±2\sqrt{39}i}{2\times 4}
Take the square root of -156.
x=\frac{6±2\sqrt{39}i}{2\times 4}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{39}i}{8}
Multiply 2 times 4.
x=\frac{6+2\sqrt{39}i}{8}
Now solve the equation x=\frac{6±2\sqrt{39}i}{8} when ± is plus. Add 6 to 2i\sqrt{39}.
x=\frac{3+\sqrt{39}i}{4}
Divide 6+2i\sqrt{39} by 8.
x=\frac{-2\sqrt{39}i+6}{8}
Now solve the equation x=\frac{6±2\sqrt{39}i}{8} when ± is minus. Subtract 2i\sqrt{39} from 6.
x=\frac{-\sqrt{39}i+3}{4}
Divide 6-2i\sqrt{39} by 8.
x=\frac{3+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+3}{4}
The equation is now solved.
4x^{2}-6x+13=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-6x+13-13=1-13
Subtract 13 from both sides of the equation.
4x^{2}-6x=1-13
Subtracting 13 from itself leaves 0.
4x^{2}-6x=-12
Subtract 13 from 1.
\frac{4x^{2}-6x}{4}=-\frac{12}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{6}{4}\right)x=-\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{3}{2}x=-\frac{12}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x=-3
Divide -12 by 4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-3+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-3+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{39}{16}
Add -3 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{39}i}{4} x-\frac{3}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{3+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+3}{4}
Add \frac{3}{4} to both sides of the equation.