Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-50x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 4\left(-100\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -50 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 4\left(-100\right)}}{2\times 4}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-16\left(-100\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-50\right)±\sqrt{2500+1600}}{2\times 4}
Multiply -16 times -100.
x=\frac{-\left(-50\right)±\sqrt{4100}}{2\times 4}
Add 2500 to 1600.
x=\frac{-\left(-50\right)±10\sqrt{41}}{2\times 4}
Take the square root of 4100.
x=\frac{50±10\sqrt{41}}{2\times 4}
The opposite of -50 is 50.
x=\frac{50±10\sqrt{41}}{8}
Multiply 2 times 4.
x=\frac{10\sqrt{41}+50}{8}
Now solve the equation x=\frac{50±10\sqrt{41}}{8} when ± is plus. Add 50 to 10\sqrt{41}.
x=\frac{5\sqrt{41}+25}{4}
Divide 50+10\sqrt{41} by 8.
x=\frac{50-10\sqrt{41}}{8}
Now solve the equation x=\frac{50±10\sqrt{41}}{8} when ± is minus. Subtract 10\sqrt{41} from 50.
x=\frac{25-5\sqrt{41}}{4}
Divide 50-10\sqrt{41} by 8.
x=\frac{5\sqrt{41}+25}{4} x=\frac{25-5\sqrt{41}}{4}
The equation is now solved.
4x^{2}-50x-100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-50x-100-\left(-100\right)=-\left(-100\right)
Add 100 to both sides of the equation.
4x^{2}-50x=-\left(-100\right)
Subtracting -100 from itself leaves 0.
4x^{2}-50x=100
Subtract -100 from 0.
\frac{4x^{2}-50x}{4}=\frac{100}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{50}{4}\right)x=\frac{100}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{25}{2}x=\frac{100}{4}
Reduce the fraction \frac{-50}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{25}{2}x=25
Divide 100 by 4.
x^{2}-\frac{25}{2}x+\left(-\frac{25}{4}\right)^{2}=25+\left(-\frac{25}{4}\right)^{2}
Divide -\frac{25}{2}, the coefficient of the x term, by 2 to get -\frac{25}{4}. Then add the square of -\frac{25}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{2}x+\frac{625}{16}=25+\frac{625}{16}
Square -\frac{25}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{2}x+\frac{625}{16}=\frac{1025}{16}
Add 25 to \frac{625}{16}.
\left(x-\frac{25}{4}\right)^{2}=\frac{1025}{16}
Factor x^{2}-\frac{25}{2}x+\frac{625}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{4}\right)^{2}}=\sqrt{\frac{1025}{16}}
Take the square root of both sides of the equation.
x-\frac{25}{4}=\frac{5\sqrt{41}}{4} x-\frac{25}{4}=-\frac{5\sqrt{41}}{4}
Simplify.
x=\frac{5\sqrt{41}+25}{4} x=\frac{25-5\sqrt{41}}{4}
Add \frac{25}{4} to both sides of the equation.
x ^ 2 -\frac{25}{2}x -25 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = \frac{25}{2} rs = -25
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{25}{4} - u s = \frac{25}{4} + u
Two numbers r and s sum up to \frac{25}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{25}{2} = \frac{25}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{25}{4} - u) (\frac{25}{4} + u) = -25
To solve for unknown quantity u, substitute these in the product equation rs = -25
\frac{625}{16} - u^2 = -25
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -25-\frac{625}{16} = -\frac{1025}{16}
Simplify the expression by subtracting \frac{625}{16} on both sides
u^2 = \frac{1025}{16} u = \pm\sqrt{\frac{1025}{16}} = \pm \frac{\sqrt{1025}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{25}{4} - \frac{\sqrt{1025}}{4} = -1.754 s = \frac{25}{4} + \frac{\sqrt{1025}}{4} = 14.254
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.