Solve for x
x=\sqrt{53}+4\approx 11.280109889
x=4-\sqrt{53}\approx -3.280109889
Graph
Share
Copied to clipboard
4x^{2}-32x=148
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-32x-148=148-148
Subtract 148 from both sides of the equation.
4x^{2}-32x-148=0
Subtracting 148 from itself leaves 0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\left(-148\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -32 for b, and -148 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\left(-148\right)}}{2\times 4}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-16\left(-148\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-32\right)±\sqrt{1024+2368}}{2\times 4}
Multiply -16 times -148.
x=\frac{-\left(-32\right)±\sqrt{3392}}{2\times 4}
Add 1024 to 2368.
x=\frac{-\left(-32\right)±8\sqrt{53}}{2\times 4}
Take the square root of 3392.
x=\frac{32±8\sqrt{53}}{2\times 4}
The opposite of -32 is 32.
x=\frac{32±8\sqrt{53}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{53}+32}{8}
Now solve the equation x=\frac{32±8\sqrt{53}}{8} when ± is plus. Add 32 to 8\sqrt{53}.
x=\sqrt{53}+4
Divide 32+8\sqrt{53} by 8.
x=\frac{32-8\sqrt{53}}{8}
Now solve the equation x=\frac{32±8\sqrt{53}}{8} when ± is minus. Subtract 8\sqrt{53} from 32.
x=4-\sqrt{53}
Divide 32-8\sqrt{53} by 8.
x=\sqrt{53}+4 x=4-\sqrt{53}
The equation is now solved.
4x^{2}-32x=148
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-32x}{4}=\frac{148}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{32}{4}\right)x=\frac{148}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-8x=\frac{148}{4}
Divide -32 by 4.
x^{2}-8x=37
Divide 148 by 4.
x^{2}-8x+\left(-4\right)^{2}=37+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=37+16
Square -4.
x^{2}-8x+16=53
Add 37 to 16.
\left(x-4\right)^{2}=53
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{53}
Take the square root of both sides of the equation.
x-4=\sqrt{53} x-4=-\sqrt{53}
Simplify.
x=\sqrt{53}+4 x=4-\sqrt{53}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}