Solve for x
x=2\sqrt{7}+5\approx 10.291502622
x=5-2\sqrt{7}\approx -0.291502622
Graph
Share
Copied to clipboard
4x^{2}-30x-12=10x
Subtract 12 from both sides.
4x^{2}-30x-12-10x=0
Subtract 10x from both sides.
4x^{2}-40x-12=0
Combine -30x and -10x to get -40x.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 4\left(-12\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -40 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 4\left(-12\right)}}{2\times 4}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-16\left(-12\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-40\right)±\sqrt{1600+192}}{2\times 4}
Multiply -16 times -12.
x=\frac{-\left(-40\right)±\sqrt{1792}}{2\times 4}
Add 1600 to 192.
x=\frac{-\left(-40\right)±16\sqrt{7}}{2\times 4}
Take the square root of 1792.
x=\frac{40±16\sqrt{7}}{2\times 4}
The opposite of -40 is 40.
x=\frac{40±16\sqrt{7}}{8}
Multiply 2 times 4.
x=\frac{16\sqrt{7}+40}{8}
Now solve the equation x=\frac{40±16\sqrt{7}}{8} when ± is plus. Add 40 to 16\sqrt{7}.
x=2\sqrt{7}+5
Divide 40+16\sqrt{7} by 8.
x=\frac{40-16\sqrt{7}}{8}
Now solve the equation x=\frac{40±16\sqrt{7}}{8} when ± is minus. Subtract 16\sqrt{7} from 40.
x=5-2\sqrt{7}
Divide 40-16\sqrt{7} by 8.
x=2\sqrt{7}+5 x=5-2\sqrt{7}
The equation is now solved.
4x^{2}-30x-10x=12
Subtract 10x from both sides.
4x^{2}-40x=12
Combine -30x and -10x to get -40x.
\frac{4x^{2}-40x}{4}=\frac{12}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{40}{4}\right)x=\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-10x=\frac{12}{4}
Divide -40 by 4.
x^{2}-10x=3
Divide 12 by 4.
x^{2}-10x+\left(-5\right)^{2}=3+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=3+25
Square -5.
x^{2}-10x+25=28
Add 3 to 25.
\left(x-5\right)^{2}=28
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x-5=2\sqrt{7} x-5=-2\sqrt{7}
Simplify.
x=2\sqrt{7}+5 x=5-2\sqrt{7}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}