Solve for x
x=4
x=-4
Graph
Share
Copied to clipboard
4x^{2}-30-34=0
Subtract 34 from both sides.
4x^{2}-64=0
Subtract 34 from -30 to get -64.
x^{2}-16=0
Divide both sides by 4.
\left(x-4\right)\left(x+4\right)=0
Consider x^{2}-16. Rewrite x^{2}-16 as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
4x^{2}=34+30
Add 30 to both sides.
4x^{2}=64
Add 34 and 30 to get 64.
x^{2}=\frac{64}{4}
Divide both sides by 4.
x^{2}=16
Divide 64 by 4 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
4x^{2}-30-34=0
Subtract 34 from both sides.
4x^{2}-64=0
Subtract 34 from -30 to get -64.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-64\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-64\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-64\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{1024}}{2\times 4}
Multiply -16 times -64.
x=\frac{0±32}{2\times 4}
Take the square root of 1024.
x=\frac{0±32}{8}
Multiply 2 times 4.
x=4
Now solve the equation x=\frac{0±32}{8} when ± is plus. Divide 32 by 8.
x=-4
Now solve the equation x=\frac{0±32}{8} when ± is minus. Divide -32 by 8.
x=4 x=-4
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}