Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2ax+a+1=4x^{2}-3x+1-bx
Subtract bx from both sides.
ax^{2}-2ax+a=4x^{2}-3x+1-bx-1
Subtract 1 from both sides.
ax^{2}-2ax+a=4x^{2}-3x-bx
Subtract 1 from 1 to get 0.
\left(x^{2}-2x+1\right)a=4x^{2}-3x-bx
Combine all terms containing a.
\left(x^{2}-2x+1\right)a=4x^{2}-bx-3x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{\left(x-1\right)^{2}}
Divide x\left(-3+4x-b\right) by x^{2}-2x+1.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
-2ax+a+bx+1=4x^{2}-3x+1-ax^{2}
Subtract ax^{2} from both sides.
a+bx+1=4x^{2}-3x+1-ax^{2}+2ax
Add 2ax to both sides.
bx+1=4x^{2}-3x+1-ax^{2}+2ax-a
Subtract a from both sides.
bx=4x^{2}-3x+1-ax^{2}+2ax-a-1
Subtract 1 from both sides.
bx=4x^{2}-3x-ax^{2}+2ax-a
Subtract 1 from 1 to get 0.
xb=-ax^{2}+4x^{2}+2ax-3x-a
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Divide both sides by x.
b=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Dividing by x undoes the multiplication by x.
b=-ax+2a+4x-\frac{a}{x}-3
Divide 4x^{2}-3x-ax^{2}+2ax-a by x.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2ax+a+1=4x^{2}-3x+1-bx
Subtract bx from both sides.
ax^{2}-2ax+a=4x^{2}-3x+1-bx-1
Subtract 1 from both sides.
ax^{2}-2ax+a=4x^{2}-3x-bx
Subtract 1 from 1 to get 0.
\left(x^{2}-2x+1\right)a=4x^{2}-3x-bx
Combine all terms containing a.
\left(x^{2}-2x+1\right)a=4x^{2}-bx-3x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{\left(x-1\right)^{2}}
Divide x\left(-3+4x-b\right) by x^{2}-2x+1.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
-2ax+a+bx+1=4x^{2}-3x+1-ax^{2}
Subtract ax^{2} from both sides.
a+bx+1=4x^{2}-3x+1-ax^{2}+2ax
Add 2ax to both sides.
bx+1=4x^{2}-3x+1-ax^{2}+2ax-a
Subtract a from both sides.
bx=4x^{2}-3x+1-ax^{2}+2ax-a-1
Subtract 1 from both sides.
bx=4x^{2}-3x-ax^{2}+2ax-a
Subtract 1 from 1 to get 0.
xb=-ax^{2}+4x^{2}+2ax-3x-a
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Divide both sides by x.
b=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Dividing by x undoes the multiplication by x.
b=-ax+2a+4x-\frac{a}{x}-3
Divide 4x^{2}-3x-ax^{2}+2ax-a by x.