Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{x\left(3+b-4x\right)}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{C}\text{, }&x=1\text{ and }b=1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-ax+2a+4x-\frac{a}{x}-3\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{x\left(3+b-4x\right)}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{R}\text{, }&x=1\text{ and }b=1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-ax+2a+4x-\frac{a}{x}-3\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
4 x ^ { 2 } - 3 x + 1 = a ( x - 1 ) ^ { 2 } + ( + b x + 1 )
Share
Copied to clipboard
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2ax+a+1=4x^{2}-3x+1-bx
Subtract bx from both sides.
ax^{2}-2ax+a=4x^{2}-3x+1-bx-1
Subtract 1 from both sides.
ax^{2}-2ax+a=4x^{2}-3x-bx
Subtract 1 from 1 to get 0.
\left(x^{2}-2x+1\right)a=4x^{2}-3x-bx
Combine all terms containing a.
\left(x^{2}-2x+1\right)a=4x^{2}-bx-3x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{\left(x-1\right)^{2}}
Divide x\left(-3+4x-b\right) by x^{2}-2x+1.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
-2ax+a+bx+1=4x^{2}-3x+1-ax^{2}
Subtract ax^{2} from both sides.
a+bx+1=4x^{2}-3x+1-ax^{2}+2ax
Add 2ax to both sides.
bx+1=4x^{2}-3x+1-ax^{2}+2ax-a
Subtract a from both sides.
bx=4x^{2}-3x+1-ax^{2}+2ax-a-1
Subtract 1 from both sides.
bx=4x^{2}-3x-ax^{2}+2ax-a
Subtract 1 from 1 to get 0.
xb=-ax^{2}+4x^{2}+2ax-3x-a
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Divide both sides by x.
b=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Dividing by x undoes the multiplication by x.
b=-ax+2a+4x-\frac{a}{x}-3
Divide 4x^{2}-3x-ax^{2}+2ax-a by x.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2ax+a+1=4x^{2}-3x+1-bx
Subtract bx from both sides.
ax^{2}-2ax+a=4x^{2}-3x+1-bx-1
Subtract 1 from both sides.
ax^{2}-2ax+a=4x^{2}-3x-bx
Subtract 1 from 1 to get 0.
\left(x^{2}-2x+1\right)a=4x^{2}-3x-bx
Combine all terms containing a.
\left(x^{2}-2x+1\right)a=4x^{2}-bx-3x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{x\left(4x-b-3\right)}{\left(x-1\right)^{2}}
Divide x\left(-3+4x-b\right) by x^{2}-2x+1.
4x^{2}-3x+1=a\left(x^{2}-2x+1\right)+bx+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}-3x+1=ax^{2}-2ax+a+bx+1
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+bx+1=4x^{2}-3x+1
Swap sides so that all variable terms are on the left hand side.
-2ax+a+bx+1=4x^{2}-3x+1-ax^{2}
Subtract ax^{2} from both sides.
a+bx+1=4x^{2}-3x+1-ax^{2}+2ax
Add 2ax to both sides.
bx+1=4x^{2}-3x+1-ax^{2}+2ax-a
Subtract a from both sides.
bx=4x^{2}-3x+1-ax^{2}+2ax-a-1
Subtract 1 from both sides.
bx=4x^{2}-3x-ax^{2}+2ax-a
Subtract 1 from 1 to get 0.
xb=-ax^{2}+4x^{2}+2ax-3x-a
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Divide both sides by x.
b=\frac{-ax^{2}+4x^{2}+2ax-3x-a}{x}
Dividing by x undoes the multiplication by x.
b=-ax+2a+4x-\frac{a}{x}-3
Divide 4x^{2}-3x-ax^{2}+2ax-a by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}