Solve for x
x = \frac{\sqrt{273} + 15}{8} \approx 3.940338955
x=\frac{15-\sqrt{273}}{8}\approx -0.190338955
Graph
Share
Copied to clipboard
4x^{2}-15x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -15 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 4\left(-3\right)}}{2\times 4}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-16\left(-3\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-15\right)±\sqrt{225+48}}{2\times 4}
Multiply -16 times -3.
x=\frac{-\left(-15\right)±\sqrt{273}}{2\times 4}
Add 225 to 48.
x=\frac{15±\sqrt{273}}{2\times 4}
The opposite of -15 is 15.
x=\frac{15±\sqrt{273}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{273}+15}{8}
Now solve the equation x=\frac{15±\sqrt{273}}{8} when ± is plus. Add 15 to \sqrt{273}.
x=\frac{15-\sqrt{273}}{8}
Now solve the equation x=\frac{15±\sqrt{273}}{8} when ± is minus. Subtract \sqrt{273} from 15.
x=\frac{\sqrt{273}+15}{8} x=\frac{15-\sqrt{273}}{8}
The equation is now solved.
4x^{2}-15x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-15x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
4x^{2}-15x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
4x^{2}-15x=3
Subtract -3 from 0.
\frac{4x^{2}-15x}{4}=\frac{3}{4}
Divide both sides by 4.
x^{2}-\frac{15}{4}x=\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{3}{4}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{273}{64}
Add \frac{3}{4} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{8}\right)^{2}=\frac{273}{64}
Factor x^{2}-\frac{15}{4}x+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{273}{64}}
Take the square root of both sides of the equation.
x-\frac{15}{8}=\frac{\sqrt{273}}{8} x-\frac{15}{8}=-\frac{\sqrt{273}}{8}
Simplify.
x=\frac{\sqrt{273}+15}{8} x=\frac{15-\sqrt{273}}{8}
Add \frac{15}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}