Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-24x-33=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 4\left(-33\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -24 for b, and -33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 4\left(-33\right)}}{2\times 4}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-16\left(-33\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-24\right)±\sqrt{576+528}}{2\times 4}
Multiply -16 times -33.
x=\frac{-\left(-24\right)±\sqrt{1104}}{2\times 4}
Add 576 to 528.
x=\frac{-\left(-24\right)±4\sqrt{69}}{2\times 4}
Take the square root of 1104.
x=\frac{24±4\sqrt{69}}{2\times 4}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{69}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{69}+24}{8}
Now solve the equation x=\frac{24±4\sqrt{69}}{8} when ± is plus. Add 24 to 4\sqrt{69}.
x=\frac{\sqrt{69}}{2}+3
Divide 24+4\sqrt{69} by 8.
x=\frac{24-4\sqrt{69}}{8}
Now solve the equation x=\frac{24±4\sqrt{69}}{8} when ± is minus. Subtract 4\sqrt{69} from 24.
x=-\frac{\sqrt{69}}{2}+3
Divide 24-4\sqrt{69} by 8.
x=\frac{\sqrt{69}}{2}+3 x=-\frac{\sqrt{69}}{2}+3
The equation is now solved.
4x^{2}-24x-33=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-24x-33-\left(-33\right)=-\left(-33\right)
Add 33 to both sides of the equation.
4x^{2}-24x=-\left(-33\right)
Subtracting -33 from itself leaves 0.
4x^{2}-24x=33
Subtract -33 from 0.
\frac{4x^{2}-24x}{4}=\frac{33}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{24}{4}\right)x=\frac{33}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-6x=\frac{33}{4}
Divide -24 by 4.
x^{2}-6x+\left(-3\right)^{2}=\frac{33}{4}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=\frac{33}{4}+9
Square -3.
x^{2}-6x+9=\frac{69}{4}
Add \frac{33}{4} to 9.
\left(x-3\right)^{2}=\frac{69}{4}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{69}{4}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{69}}{2} x-3=-\frac{\sqrt{69}}{2}
Simplify.
x=\frac{\sqrt{69}}{2}+3 x=-\frac{\sqrt{69}}{2}+3
Add 3 to both sides of the equation.
x ^ 2 -6x -\frac{33}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 6 rs = -\frac{33}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = -\frac{33}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{33}{4}
9 - u^2 = -\frac{33}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{33}{4}-9 = -\frac{69}{4}
Simplify the expression by subtracting 9 on both sides
u^2 = \frac{69}{4} u = \pm\sqrt{\frac{69}{4}} = \pm \frac{\sqrt{69}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - \frac{\sqrt{69}}{2} = -1.153 s = 3 + \frac{\sqrt{69}}{2} = 7.153
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.