Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-24-20x=0
Subtract 20x from both sides.
x^{2}-6-5x=0
Divide both sides by 4.
x^{2}-5x-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-5 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Rewrite x^{2}-5x-6 as \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Factor out x in x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Factor out common term x-6 by using distributive property.
x=6 x=-1
To find equation solutions, solve x-6=0 and x+1=0.
4x^{2}-24-20x=0
Subtract 20x from both sides.
4x^{2}-20x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\left(-24\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -20 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\left(-24\right)}}{2\times 4}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\left(-24\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-20\right)±\sqrt{400+384}}{2\times 4}
Multiply -16 times -24.
x=\frac{-\left(-20\right)±\sqrt{784}}{2\times 4}
Add 400 to 384.
x=\frac{-\left(-20\right)±28}{2\times 4}
Take the square root of 784.
x=\frac{20±28}{2\times 4}
The opposite of -20 is 20.
x=\frac{20±28}{8}
Multiply 2 times 4.
x=\frac{48}{8}
Now solve the equation x=\frac{20±28}{8} when ± is plus. Add 20 to 28.
x=6
Divide 48 by 8.
x=-\frac{8}{8}
Now solve the equation x=\frac{20±28}{8} when ± is minus. Subtract 28 from 20.
x=-1
Divide -8 by 8.
x=6 x=-1
The equation is now solved.
4x^{2}-24-20x=0
Subtract 20x from both sides.
4x^{2}-20x=24
Add 24 to both sides. Anything plus zero gives itself.
\frac{4x^{2}-20x}{4}=\frac{24}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{20}{4}\right)x=\frac{24}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-5x=\frac{24}{4}
Divide -20 by 4.
x^{2}-5x=6
Divide 24 by 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Simplify.
x=6 x=-1
Add \frac{5}{2} to both sides of the equation.