Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-20 ab=4\left(-11\right)=-44
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-11. To find a and b, set up a system to be solved.
1,-44 2,-22 4,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -44.
1-44=-43 2-22=-20 4-11=-7
Calculate the sum for each pair.
a=-22 b=2
The solution is the pair that gives sum -20.
\left(4x^{2}-22x\right)+\left(2x-11\right)
Rewrite 4x^{2}-20x-11 as \left(4x^{2}-22x\right)+\left(2x-11\right).
2x\left(2x-11\right)+2x-11
Factor out 2x in 4x^{2}-22x.
\left(2x-11\right)\left(2x+1\right)
Factor out common term 2x-11 by using distributive property.
x=\frac{11}{2} x=-\frac{1}{2}
To find equation solutions, solve 2x-11=0 and 2x+1=0.
4x^{2}-20x-11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\left(-11\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -20 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\left(-11\right)}}{2\times 4}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\left(-11\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-20\right)±\sqrt{400+176}}{2\times 4}
Multiply -16 times -11.
x=\frac{-\left(-20\right)±\sqrt{576}}{2\times 4}
Add 400 to 176.
x=\frac{-\left(-20\right)±24}{2\times 4}
Take the square root of 576.
x=\frac{20±24}{2\times 4}
The opposite of -20 is 20.
x=\frac{20±24}{8}
Multiply 2 times 4.
x=\frac{44}{8}
Now solve the equation x=\frac{20±24}{8} when ± is plus. Add 20 to 24.
x=\frac{11}{2}
Reduce the fraction \frac{44}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{4}{8}
Now solve the equation x=\frac{20±24}{8} when ± is minus. Subtract 24 from 20.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=\frac{11}{2} x=-\frac{1}{2}
The equation is now solved.
4x^{2}-20x-11=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-20x-11-\left(-11\right)=-\left(-11\right)
Add 11 to both sides of the equation.
4x^{2}-20x=-\left(-11\right)
Subtracting -11 from itself leaves 0.
4x^{2}-20x=11
Subtract -11 from 0.
\frac{4x^{2}-20x}{4}=\frac{11}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{20}{4}\right)x=\frac{11}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-5x=\frac{11}{4}
Divide -20 by 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{11}{4}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{11+25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=9
Add \frac{11}{4} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=9
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-\frac{5}{2}=3 x-\frac{5}{2}=-3
Simplify.
x=\frac{11}{2} x=-\frac{1}{2}
Add \frac{5}{2} to both sides of the equation.
x ^ 2 -5x -\frac{11}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 5 rs = -\frac{11}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{2} - u s = \frac{5}{2} + u
Two numbers r and s sum up to 5 exactly when the average of the two numbers is \frac{1}{2}*5 = \frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{2} - u) (\frac{5}{2} + u) = -\frac{11}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{11}{4}
\frac{25}{4} - u^2 = -\frac{11}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{11}{4}-\frac{25}{4} = -9
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = 9 u = \pm\sqrt{9} = \pm 3
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{2} - 3 = -0.500 s = \frac{5}{2} + 3 = 5.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.