Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(4x-17\right)=0
Factor out x.
x=0 x=\frac{17}{4}
To find equation solutions, solve x=0 and 4x-17=0.
4x^{2}-17x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -17 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±17}{2\times 4}
Take the square root of \left(-17\right)^{2}.
x=\frac{17±17}{2\times 4}
The opposite of -17 is 17.
x=\frac{17±17}{8}
Multiply 2 times 4.
x=\frac{34}{8}
Now solve the equation x=\frac{17±17}{8} when ± is plus. Add 17 to 17.
x=\frac{17}{4}
Reduce the fraction \frac{34}{8} to lowest terms by extracting and canceling out 2.
x=\frac{0}{8}
Now solve the equation x=\frac{17±17}{8} when ± is minus. Subtract 17 from 17.
x=0
Divide 0 by 8.
x=\frac{17}{4} x=0
The equation is now solved.
4x^{2}-17x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-17x}{4}=\frac{0}{4}
Divide both sides by 4.
x^{2}-\frac{17}{4}x=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{17}{4}x=0
Divide 0 by 4.
x^{2}-\frac{17}{4}x+\left(-\frac{17}{8}\right)^{2}=\left(-\frac{17}{8}\right)^{2}
Divide -\frac{17}{4}, the coefficient of the x term, by 2 to get -\frac{17}{8}. Then add the square of -\frac{17}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{4}x+\frac{289}{64}=\frac{289}{64}
Square -\frac{17}{8} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{17}{8}\right)^{2}=\frac{289}{64}
Factor x^{2}-\frac{17}{4}x+\frac{289}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{8}\right)^{2}}=\sqrt{\frac{289}{64}}
Take the square root of both sides of the equation.
x-\frac{17}{8}=\frac{17}{8} x-\frac{17}{8}=-\frac{17}{8}
Simplify.
x=\frac{17}{4} x=0
Add \frac{17}{8} to both sides of the equation.