Solve for x
x = \frac{\sqrt{85} + 7}{4} \approx 4.054886114
x=\frac{7-\sqrt{85}}{4}\approx -0.554886114
Graph
Share
Copied to clipboard
4x^{2}-14x=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-14x-9=9-9
Subtract 9 from both sides of the equation.
4x^{2}-14x-9=0
Subtracting 9 from itself leaves 0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -14 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\left(-9\right)}}{2\times 4}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\left(-9\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-14\right)±\sqrt{196+144}}{2\times 4}
Multiply -16 times -9.
x=\frac{-\left(-14\right)±\sqrt{340}}{2\times 4}
Add 196 to 144.
x=\frac{-\left(-14\right)±2\sqrt{85}}{2\times 4}
Take the square root of 340.
x=\frac{14±2\sqrt{85}}{2\times 4}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{85}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{85}+14}{8}
Now solve the equation x=\frac{14±2\sqrt{85}}{8} when ± is plus. Add 14 to 2\sqrt{85}.
x=\frac{\sqrt{85}+7}{4}
Divide 14+2\sqrt{85} by 8.
x=\frac{14-2\sqrt{85}}{8}
Now solve the equation x=\frac{14±2\sqrt{85}}{8} when ± is minus. Subtract 2\sqrt{85} from 14.
x=\frac{7-\sqrt{85}}{4}
Divide 14-2\sqrt{85} by 8.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
The equation is now solved.
4x^{2}-14x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-14x}{4}=\frac{9}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{14}{4}\right)x=\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{7}{2}x=\frac{9}{4}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{4}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{4}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{85}{16}
Add \frac{9}{4} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{85}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{85}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{85}}{4} x-\frac{7}{4}=-\frac{\sqrt{85}}{4}
Simplify.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}