Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
a+b=-12 ab=4\left(-27\right)=-108
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-27. To find a and b, set up a system to be solved.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Calculate the sum for each pair.
a=-18 b=6
The solution is the pair that gives sum -12.
\left(4x^{2}-18x\right)+\left(6x-27\right)
Rewrite 4x^{2}-12x-27 as \left(4x^{2}-18x\right)+\left(6x-27\right).
2x\left(2x-9\right)+3\left(2x-9\right)
Factor out 2x in the first and 3 in the second group.
\left(2x-9\right)\left(2x+3\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=-\frac{3}{2}
To find equation solutions, solve 2x-9=0 and 2x+3=0.
4x^{2}-12x-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-27\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-27\right)}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-27\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\times 4}
Multiply -16 times -27.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\times 4}
Add 144 to 432.
x=\frac{-\left(-12\right)±24}{2\times 4}
Take the square root of 576.
x=\frac{12±24}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±24}{8}
Multiply 2 times 4.
x=\frac{36}{8}
Now solve the equation x=\frac{12±24}{8} when ± is plus. Add 12 to 24.
x=\frac{9}{2}
Reduce the fraction \frac{36}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{12}{8}
Now solve the equation x=\frac{12±24}{8} when ± is minus. Subtract 24 from 12.
x=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{9}{2} x=-\frac{3}{2}
The equation is now solved.
4x^{2}-12x-27=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-12x-27-\left(-27\right)=-\left(-27\right)
Add 27 to both sides of the equation.
4x^{2}-12x=-\left(-27\right)
Subtracting -27 from itself leaves 0.
4x^{2}-12x=27
Subtract -27 from 0.
\frac{4x^{2}-12x}{4}=\frac{27}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{27}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=\frac{27}{4}
Divide -12 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{27}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{27+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=9
Add \frac{27}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=9
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-\frac{3}{2}=3 x-\frac{3}{2}=-3
Simplify.
x=\frac{9}{2} x=-\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
x ^ 2 -3x -\frac{27}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = 3 rs = -\frac{27}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{2} - u s = \frac{3}{2} + u
Two numbers r and s sum up to 3 exactly when the average of the two numbers is \frac{1}{2}*3 = \frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{2} - u) (\frac{3}{2} + u) = -\frac{27}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{27}{4}
\frac{9}{4} - u^2 = -\frac{27}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{27}{4}-\frac{9}{4} = -9
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = 9 u = \pm\sqrt{9} = \pm 3
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{2} - 3 = -1.500 s = \frac{3}{2} + 3 = 4.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}