Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+10-3x^{2}=-16x
Subtract 3x^{2} from both sides.
x^{2}-12x+10=-16x
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}-12x+10+16x=0
Add 16x to both sides.
x^{2}+4x+10=0
Combine -12x and 16x to get 4x.
x=\frac{-4±\sqrt{4^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 10}}{2}
Square 4.
x=\frac{-4±\sqrt{16-40}}{2}
Multiply -4 times 10.
x=\frac{-4±\sqrt{-24}}{2}
Add 16 to -40.
x=\frac{-4±2\sqrt{6}i}{2}
Take the square root of -24.
x=\frac{-4+2\sqrt{6}i}{2}
Now solve the equation x=\frac{-4±2\sqrt{6}i}{2} when ± is plus. Add -4 to 2i\sqrt{6}.
x=-2+\sqrt{6}i
Divide -4+2i\sqrt{6} by 2.
x=\frac{-2\sqrt{6}i-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{6}i}{2} when ± is minus. Subtract 2i\sqrt{6} from -4.
x=-\sqrt{6}i-2
Divide -4-2i\sqrt{6} by 2.
x=-2+\sqrt{6}i x=-\sqrt{6}i-2
The equation is now solved.
4x^{2}-12x+10-3x^{2}=-16x
Subtract 3x^{2} from both sides.
x^{2}-12x+10=-16x
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}-12x+10+16x=0
Add 16x to both sides.
x^{2}+4x+10=0
Combine -12x and 16x to get 4x.
x^{2}+4x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x^{2}+4x+2^{2}=-10+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-10+4
Square 2.
x^{2}+4x+4=-6
Add -10 to 4.
\left(x+2\right)^{2}=-6
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-6}
Take the square root of both sides of the equation.
x+2=\sqrt{6}i x+2=-\sqrt{6}i
Simplify.
x=-2+\sqrt{6}i x=-\sqrt{6}i-2
Subtract 2 from both sides of the equation.