Solve for x
x=\frac{\sqrt{8095}}{2}+45\approx 89.986108967
x=-\frac{\sqrt{8095}}{2}+45\approx 0.013891033
Graph
Share
Copied to clipboard
4x^{2}-360x+5=0
Multiply 10 and 36 to get 360.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 4\times 5}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -360 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\times 4\times 5}}{2\times 4}
Square -360.
x=\frac{-\left(-360\right)±\sqrt{129600-16\times 5}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-360\right)±\sqrt{129600-80}}{2\times 4}
Multiply -16 times 5.
x=\frac{-\left(-360\right)±\sqrt{129520}}{2\times 4}
Add 129600 to -80.
x=\frac{-\left(-360\right)±4\sqrt{8095}}{2\times 4}
Take the square root of 129520.
x=\frac{360±4\sqrt{8095}}{2\times 4}
The opposite of -360 is 360.
x=\frac{360±4\sqrt{8095}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{8095}+360}{8}
Now solve the equation x=\frac{360±4\sqrt{8095}}{8} when ± is plus. Add 360 to 4\sqrt{8095}.
x=\frac{\sqrt{8095}}{2}+45
Divide 360+4\sqrt{8095} by 8.
x=\frac{360-4\sqrt{8095}}{8}
Now solve the equation x=\frac{360±4\sqrt{8095}}{8} when ± is minus. Subtract 4\sqrt{8095} from 360.
x=-\frac{\sqrt{8095}}{2}+45
Divide 360-4\sqrt{8095} by 8.
x=\frac{\sqrt{8095}}{2}+45 x=-\frac{\sqrt{8095}}{2}+45
The equation is now solved.
4x^{2}-360x+5=0
Multiply 10 and 36 to get 360.
4x^{2}-360x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-360x}{4}=-\frac{5}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{360}{4}\right)x=-\frac{5}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-90x=-\frac{5}{4}
Divide -360 by 4.
x^{2}-90x+\left(-45\right)^{2}=-\frac{5}{4}+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=-\frac{5}{4}+2025
Square -45.
x^{2}-90x+2025=\frac{8095}{4}
Add -\frac{5}{4} to 2025.
\left(x-45\right)^{2}=\frac{8095}{4}
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{\frac{8095}{4}}
Take the square root of both sides of the equation.
x-45=\frac{\sqrt{8095}}{2} x-45=-\frac{\sqrt{8095}}{2}
Simplify.
x=\frac{\sqrt{8095}}{2}+45 x=-\frac{\sqrt{8095}}{2}+45
Add 45 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}