Solve for x
x=2\sqrt{3}+4\approx 7.464101615
x=4-2\sqrt{3}\approx 0.535898385
Graph
Share
Copied to clipboard
4x^{2}-\left(4-8x+4x^{2}\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
4x^{2}-4+8x-4x^{2}=x^{2}
To find the opposite of 4-8x+4x^{2}, find the opposite of each term.
-4+8x=x^{2}
Combine 4x^{2} and -4x^{2} to get 0.
-4+8x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+8x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-8±\sqrt{48}}{2\left(-1\right)}
Add 64 to -16.
x=\frac{-8±4\sqrt{3}}{2\left(-1\right)}
Take the square root of 48.
x=\frac{-8±4\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{3}-8}{-2}
Now solve the equation x=\frac{-8±4\sqrt{3}}{-2} when ± is plus. Add -8 to 4\sqrt{3}.
x=4-2\sqrt{3}
Divide -8+4\sqrt{3} by -2.
x=\frac{-4\sqrt{3}-8}{-2}
Now solve the equation x=\frac{-8±4\sqrt{3}}{-2} when ± is minus. Subtract 4\sqrt{3} from -8.
x=2\sqrt{3}+4
Divide -8-4\sqrt{3} by -2.
x=4-2\sqrt{3} x=2\sqrt{3}+4
The equation is now solved.
4x^{2}-\left(4-8x+4x^{2}\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
4x^{2}-4+8x-4x^{2}=x^{2}
To find the opposite of 4-8x+4x^{2}, find the opposite of each term.
-4+8x=x^{2}
Combine 4x^{2} and -4x^{2} to get 0.
-4+8x-x^{2}=0
Subtract x^{2} from both sides.
8x-x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
-x^{2}+8x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+8x}{-1}=\frac{4}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=\frac{4}{-1}
Divide 8 by -1.
x^{2}-8x=-4
Divide 4 by -1.
x^{2}-8x+\left(-4\right)^{2}=-4+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-4+16
Square -4.
x^{2}-8x+16=12
Add -4 to 16.
\left(x-4\right)^{2}=12
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-4=2\sqrt{3} x-4=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+4 x=4-2\sqrt{3}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}