Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-8=-3x
Subtract 8 from both sides.
4x^{2}-8+3x=0
Add 3x to both sides.
4x^{2}+3x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\left(-8\right)}}{2\times 4}
Square 3.
x=\frac{-3±\sqrt{9-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-3±\sqrt{9+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-3±\sqrt{137}}{2\times 4}
Add 9 to 128.
x=\frac{-3±\sqrt{137}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{137}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{137}}{8} when ± is plus. Add -3 to \sqrt{137}.
x=\frac{-\sqrt{137}-3}{8}
Now solve the equation x=\frac{-3±\sqrt{137}}{8} when ± is minus. Subtract \sqrt{137} from -3.
x=\frac{\sqrt{137}-3}{8} x=\frac{-\sqrt{137}-3}{8}
The equation is now solved.
4x^{2}+3x=8
Add 3x to both sides.
\frac{4x^{2}+3x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{3}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{4}x=2
Divide 8 by 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=2+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=2+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{137}{64}
Add 2 to \frac{9}{64}.
\left(x+\frac{3}{8}\right)^{2}=\frac{137}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{137}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{137}}{8} x+\frac{3}{8}=-\frac{\sqrt{137}}{8}
Simplify.
x=\frac{\sqrt{137}-3}{8} x=\frac{-\sqrt{137}-3}{8}
Subtract \frac{3}{8} from both sides of the equation.