Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-20x=-4
Subtract 20x from both sides.
4x^{2}-20x+4=0
Add 4 to both sides.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 4}}{2\times 4}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-20\right)±\sqrt{400-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-20\right)±\sqrt{336}}{2\times 4}
Add 400 to -64.
x=\frac{-\left(-20\right)±4\sqrt{21}}{2\times 4}
Take the square root of 336.
x=\frac{20±4\sqrt{21}}{2\times 4}
The opposite of -20 is 20.
x=\frac{20±4\sqrt{21}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{21}+20}{8}
Now solve the equation x=\frac{20±4\sqrt{21}}{8} when ± is plus. Add 20 to 4\sqrt{21}.
x=\frac{\sqrt{21}+5}{2}
Divide 20+4\sqrt{21} by 8.
x=\frac{20-4\sqrt{21}}{8}
Now solve the equation x=\frac{20±4\sqrt{21}}{8} when ± is minus. Subtract 4\sqrt{21} from 20.
x=\frac{5-\sqrt{21}}{2}
Divide 20-4\sqrt{21} by 8.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
The equation is now solved.
4x^{2}-20x=-4
Subtract 20x from both sides.
\frac{4x^{2}-20x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-5x=-\frac{4}{4}
Divide -20 by 4.
x^{2}-5x=-1
Divide -4 by 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
Add -1 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
Add \frac{5}{2} to both sides of the equation.