Solve for x
x = \frac{\sqrt{21} + 5}{2} \approx 4.791287847
x=\frac{5-\sqrt{21}}{2}\approx 0.208712153
Graph
Share
Copied to clipboard
4x^{2}-20x=-4
Subtract 20x from both sides.
4x^{2}-20x+4=0
Add 4 to both sides.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 4}}{2\times 4}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-20\right)±\sqrt{400-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-20\right)±\sqrt{336}}{2\times 4}
Add 400 to -64.
x=\frac{-\left(-20\right)±4\sqrt{21}}{2\times 4}
Take the square root of 336.
x=\frac{20±4\sqrt{21}}{2\times 4}
The opposite of -20 is 20.
x=\frac{20±4\sqrt{21}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{21}+20}{8}
Now solve the equation x=\frac{20±4\sqrt{21}}{8} when ± is plus. Add 20 to 4\sqrt{21}.
x=\frac{\sqrt{21}+5}{2}
Divide 20+4\sqrt{21} by 8.
x=\frac{20-4\sqrt{21}}{8}
Now solve the equation x=\frac{20±4\sqrt{21}}{8} when ± is minus. Subtract 4\sqrt{21} from 20.
x=\frac{5-\sqrt{21}}{2}
Divide 20-4\sqrt{21} by 8.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
The equation is now solved.
4x^{2}-20x=-4
Subtract 20x from both sides.
\frac{4x^{2}-20x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-5x=-\frac{4}{4}
Divide -20 by 4.
x^{2}-5x=-1
Divide -4 by 4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
Add -1 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}