Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+32x=12
Add 32x to both sides.
4x^{2}+32x-12=0
Subtract 12 from both sides.
x=\frac{-32±\sqrt{32^{2}-4\times 4\left(-12\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 32 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 4\left(-12\right)}}{2\times 4}
Square 32.
x=\frac{-32±\sqrt{1024-16\left(-12\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-32±\sqrt{1024+192}}{2\times 4}
Multiply -16 times -12.
x=\frac{-32±\sqrt{1216}}{2\times 4}
Add 1024 to 192.
x=\frac{-32±8\sqrt{19}}{2\times 4}
Take the square root of 1216.
x=\frac{-32±8\sqrt{19}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{19}-32}{8}
Now solve the equation x=\frac{-32±8\sqrt{19}}{8} when ± is plus. Add -32 to 8\sqrt{19}.
x=\sqrt{19}-4
Divide -32+8\sqrt{19} by 8.
x=\frac{-8\sqrt{19}-32}{8}
Now solve the equation x=\frac{-32±8\sqrt{19}}{8} when ± is minus. Subtract 8\sqrt{19} from -32.
x=-\sqrt{19}-4
Divide -32-8\sqrt{19} by 8.
x=\sqrt{19}-4 x=-\sqrt{19}-4
The equation is now solved.
4x^{2}+32x=12
Add 32x to both sides.
\frac{4x^{2}+32x}{4}=\frac{12}{4}
Divide both sides by 4.
x^{2}+\frac{32}{4}x=\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+8x=\frac{12}{4}
Divide 32 by 4.
x^{2}+8x=3
Divide 12 by 4.
x^{2}+8x+4^{2}=3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=3+16
Square 4.
x^{2}+8x+16=19
Add 3 to 16.
\left(x+4\right)^{2}=19
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x+4=\sqrt{19} x+4=-\sqrt{19}
Simplify.
x=\sqrt{19}-4 x=-\sqrt{19}-4
Subtract 4 from both sides of the equation.
4x^{2}+32x=12
Add 32x to both sides.
4x^{2}+32x-12=0
Subtract 12 from both sides.
x=\frac{-32±\sqrt{32^{2}-4\times 4\left(-12\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 32 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 4\left(-12\right)}}{2\times 4}
Square 32.
x=\frac{-32±\sqrt{1024-16\left(-12\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-32±\sqrt{1024+192}}{2\times 4}
Multiply -16 times -12.
x=\frac{-32±\sqrt{1216}}{2\times 4}
Add 1024 to 192.
x=\frac{-32±8\sqrt{19}}{2\times 4}
Take the square root of 1216.
x=\frac{-32±8\sqrt{19}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{19}-32}{8}
Now solve the equation x=\frac{-32±8\sqrt{19}}{8} when ± is plus. Add -32 to 8\sqrt{19}.
x=\sqrt{19}-4
Divide -32+8\sqrt{19} by 8.
x=\frac{-8\sqrt{19}-32}{8}
Now solve the equation x=\frac{-32±8\sqrt{19}}{8} when ± is minus. Subtract 8\sqrt{19} from -32.
x=-\sqrt{19}-4
Divide -32-8\sqrt{19} by 8.
x=\sqrt{19}-4 x=-\sqrt{19}-4
The equation is now solved.
4x^{2}+32x=12
Add 32x to both sides.
\frac{4x^{2}+32x}{4}=\frac{12}{4}
Divide both sides by 4.
x^{2}+\frac{32}{4}x=\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+8x=\frac{12}{4}
Divide 32 by 4.
x^{2}+8x=3
Divide 12 by 4.
x^{2}+8x+4^{2}=3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=3+16
Square 4.
x^{2}+8x+16=19
Add 3 to 16.
\left(x+4\right)^{2}=19
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x+4=\sqrt{19} x+4=-\sqrt{19}
Simplify.
x=\sqrt{19}-4 x=-\sqrt{19}-4
Subtract 4 from both sides of the equation.