Solve for y
y=-\frac{8x^{2}}{5}+\frac{3x}{10}-\frac{3}{5}
Solve for x (complex solution)
x=\frac{\sqrt{-640y-375}+3}{32}
x=\frac{-\sqrt{-640y-375}+3}{32}
Solve for x
x=\frac{\sqrt{-640y-375}+3}{32}
x=\frac{-\sqrt{-640y-375}+3}{32}\text{, }y\leq -\frac{75}{128}
Graph
Share
Copied to clipboard
16x^{2}=3\left(x-2\right)-5\times 2y
Multiply both sides of the equation by 4.
16x^{2}=3x-6-5\times 2y
Use the distributive property to multiply 3 by x-2.
16x^{2}=3x-6-10y
Multiply 5 and 2 to get 10.
3x-6-10y=16x^{2}
Swap sides so that all variable terms are on the left hand side.
-6-10y=16x^{2}-3x
Subtract 3x from both sides.
-10y=16x^{2}-3x+6
Add 6 to both sides.
\frac{-10y}{-10}=\frac{16x^{2}-3x+6}{-10}
Divide both sides by -10.
y=\frac{16x^{2}-3x+6}{-10}
Dividing by -10 undoes the multiplication by -10.
y=-\frac{8x^{2}}{5}+\frac{3x}{10}-\frac{3}{5}
Divide 16x^{2}-3x+6 by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}