Solve for y
y=-4+\frac{1}{4x^{2}}
x\neq 0
Solve for x (complex solution)
x=-\frac{\left(y+4\right)^{-\frac{1}{2}}}{2}
x=\frac{\left(y+4\right)^{-\frac{1}{2}}}{2}\text{, }y\neq -4
Solve for x
x=\frac{1}{2\sqrt{y+4}}
x=-\frac{1}{2\sqrt{y+4}}\text{, }y>-4
Graph
Share
Copied to clipboard
4x^{2}\left(y+4\right)=1
Variable y cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by y+4.
4x^{2}y+16x^{2}=1
Use the distributive property to multiply 4x^{2} by y+4.
4x^{2}y=1-16x^{2}
Subtract 16x^{2} from both sides.
\frac{4x^{2}y}{4x^{2}}=\frac{1-16x^{2}}{4x^{2}}
Divide both sides by 4x^{2}.
y=\frac{1-16x^{2}}{4x^{2}}
Dividing by 4x^{2} undoes the multiplication by 4x^{2}.
y=-4+\frac{1}{4x^{2}}
Divide -16x^{2}+1 by 4x^{2}.
y=-4+\frac{1}{4x^{2}}\text{, }y\neq -4
Variable y cannot be equal to -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}