Solve for x
x=\frac{\sqrt{41}-3}{4}\approx 0.850781059
x=\frac{-\sqrt{41}-3}{4}\approx -2.350781059
Graph
Share
Copied to clipboard
4x^{2}+7x-8-x=0
Subtract x from both sides.
4x^{2}+6x-8=0
Combine 7x and -x to get 6x.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\left(-8\right)}}{2\times 4}
Square 6.
x=\frac{-6±\sqrt{36-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-6±\sqrt{36+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-6±\sqrt{164}}{2\times 4}
Add 36 to 128.
x=\frac{-6±2\sqrt{41}}{2\times 4}
Take the square root of 164.
x=\frac{-6±2\sqrt{41}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{41}-6}{8}
Now solve the equation x=\frac{-6±2\sqrt{41}}{8} when ± is plus. Add -6 to 2\sqrt{41}.
x=\frac{\sqrt{41}-3}{4}
Divide -6+2\sqrt{41} by 8.
x=\frac{-2\sqrt{41}-6}{8}
Now solve the equation x=\frac{-6±2\sqrt{41}}{8} when ± is minus. Subtract 2\sqrt{41} from -6.
x=\frac{-\sqrt{41}-3}{4}
Divide -6-2\sqrt{41} by 8.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
The equation is now solved.
4x^{2}+7x-8-x=0
Subtract x from both sides.
4x^{2}+6x-8=0
Combine 7x and -x to get 6x.
4x^{2}+6x=8
Add 8 to both sides. Anything plus zero gives itself.
\frac{4x^{2}+6x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{6}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{3}{2}x=\frac{8}{4}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{2}x=2
Divide 8 by 4.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Add 2 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
Simplify.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}