Solve for y
y=-\frac{21x}{50}+\frac{9}{5x}
x\neq 0
Solve for x
x=\frac{\sqrt{625y^{2}+1890}-25y}{21}
x=\frac{-\sqrt{625y^{2}+1890}-25y}{21}
Graph
Share
Copied to clipboard
20x^{2}+30xy+x^{2}=90-20xy
Multiply both sides of the equation by 5.
21x^{2}+30xy=90-20xy
Combine 20x^{2} and x^{2} to get 21x^{2}.
21x^{2}+30xy+20xy=90
Add 20xy to both sides.
21x^{2}+50xy=90
Combine 30xy and 20xy to get 50xy.
50xy=90-21x^{2}
Subtract 21x^{2} from both sides.
\frac{50xy}{50x}=\frac{90-21x^{2}}{50x}
Divide both sides by 50x.
y=\frac{90-21x^{2}}{50x}
Dividing by 50x undoes the multiplication by 50x.
y=-\frac{21x}{50}+\frac{9}{5x}
Divide 90-21x^{2} by 50x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}