Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+48x-76-1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+48x-77=0
Subtract 1 from -76 to get -77.
x=\frac{-48±\sqrt{48^{2}-4\times 3\left(-77\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 48 for b, and -77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 3\left(-77\right)}}{2\times 3}
Square 48.
x=\frac{-48±\sqrt{2304-12\left(-77\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-48±\sqrt{2304+924}}{2\times 3}
Multiply -12 times -77.
x=\frac{-48±\sqrt{3228}}{2\times 3}
Add 2304 to 924.
x=\frac{-48±2\sqrt{807}}{2\times 3}
Take the square root of 3228.
x=\frac{-48±2\sqrt{807}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{807}-48}{6}
Now solve the equation x=\frac{-48±2\sqrt{807}}{6} when ± is plus. Add -48 to 2\sqrt{807}.
x=\frac{\sqrt{807}}{3}-8
Divide -48+2\sqrt{807} by 6.
x=\frac{-2\sqrt{807}-48}{6}
Now solve the equation x=\frac{-48±2\sqrt{807}}{6} when ± is minus. Subtract 2\sqrt{807} from -48.
x=-\frac{\sqrt{807}}{3}-8
Divide -48-2\sqrt{807} by 6.
x=\frac{\sqrt{807}}{3}-8 x=-\frac{\sqrt{807}}{3}-8
The equation is now solved.
3x^{2}+48x-76-1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+48x-77=0
Subtract 1 from -76 to get -77.
3x^{2}+48x=77
Add 77 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+48x}{3}=\frac{77}{3}
Divide both sides by 3.
x^{2}+\frac{48}{3}x=\frac{77}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+16x=\frac{77}{3}
Divide 48 by 3.
x^{2}+16x+8^{2}=\frac{77}{3}+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=\frac{77}{3}+64
Square 8.
x^{2}+16x+64=\frac{269}{3}
Add \frac{77}{3} to 64.
\left(x+8\right)^{2}=\frac{269}{3}
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{\frac{269}{3}}
Take the square root of both sides of the equation.
x+8=\frac{\sqrt{807}}{3} x+8=-\frac{\sqrt{807}}{3}
Simplify.
x=\frac{\sqrt{807}}{3}-8 x=-\frac{\sqrt{807}}{3}-8
Subtract 8 from both sides of the equation.