Solve for x
x=\frac{\sqrt{807}}{3}-8\approx 1.469248474
x=-\frac{\sqrt{807}}{3}-8\approx -17.469248474
Graph
Share
Copied to clipboard
3x^{2}+48x-76-1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+48x-77=0
Subtract 1 from -76 to get -77.
x=\frac{-48±\sqrt{48^{2}-4\times 3\left(-77\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 48 for b, and -77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 3\left(-77\right)}}{2\times 3}
Square 48.
x=\frac{-48±\sqrt{2304-12\left(-77\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-48±\sqrt{2304+924}}{2\times 3}
Multiply -12 times -77.
x=\frac{-48±\sqrt{3228}}{2\times 3}
Add 2304 to 924.
x=\frac{-48±2\sqrt{807}}{2\times 3}
Take the square root of 3228.
x=\frac{-48±2\sqrt{807}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{807}-48}{6}
Now solve the equation x=\frac{-48±2\sqrt{807}}{6} when ± is plus. Add -48 to 2\sqrt{807}.
x=\frac{\sqrt{807}}{3}-8
Divide -48+2\sqrt{807} by 6.
x=\frac{-2\sqrt{807}-48}{6}
Now solve the equation x=\frac{-48±2\sqrt{807}}{6} when ± is minus. Subtract 2\sqrt{807} from -48.
x=-\frac{\sqrt{807}}{3}-8
Divide -48-2\sqrt{807} by 6.
x=\frac{\sqrt{807}}{3}-8 x=-\frac{\sqrt{807}}{3}-8
The equation is now solved.
3x^{2}+48x-76-1=0
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+48x-77=0
Subtract 1 from -76 to get -77.
3x^{2}+48x=77
Add 77 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+48x}{3}=\frac{77}{3}
Divide both sides by 3.
x^{2}+\frac{48}{3}x=\frac{77}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+16x=\frac{77}{3}
Divide 48 by 3.
x^{2}+16x+8^{2}=\frac{77}{3}+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=\frac{77}{3}+64
Square 8.
x^{2}+16x+64=\frac{269}{3}
Add \frac{77}{3} to 64.
\left(x+8\right)^{2}=\frac{269}{3}
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{\frac{269}{3}}
Take the square root of both sides of the equation.
x+8=\frac{\sqrt{807}}{3} x+8=-\frac{\sqrt{807}}{3}
Simplify.
x=\frac{\sqrt{807}}{3}-8 x=-\frac{\sqrt{807}}{3}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}