Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+42x-2x=-8
Subtract 2x from both sides.
4x^{2}+40x=-8
Combine 42x and -2x to get 40x.
4x^{2}+40x+8=0
Add 8 to both sides.
x=\frac{-40±\sqrt{40^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 40 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 4\times 8}}{2\times 4}
Square 40.
x=\frac{-40±\sqrt{1600-16\times 8}}{2\times 4}
Multiply -4 times 4.
x=\frac{-40±\sqrt{1600-128}}{2\times 4}
Multiply -16 times 8.
x=\frac{-40±\sqrt{1472}}{2\times 4}
Add 1600 to -128.
x=\frac{-40±8\sqrt{23}}{2\times 4}
Take the square root of 1472.
x=\frac{-40±8\sqrt{23}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{23}-40}{8}
Now solve the equation x=\frac{-40±8\sqrt{23}}{8} when ± is plus. Add -40 to 8\sqrt{23}.
x=\sqrt{23}-5
Divide -40+8\sqrt{23} by 8.
x=\frac{-8\sqrt{23}-40}{8}
Now solve the equation x=\frac{-40±8\sqrt{23}}{8} when ± is minus. Subtract 8\sqrt{23} from -40.
x=-\sqrt{23}-5
Divide -40-8\sqrt{23} by 8.
x=\sqrt{23}-5 x=-\sqrt{23}-5
The equation is now solved.
4x^{2}+42x-2x=-8
Subtract 2x from both sides.
4x^{2}+40x=-8
Combine 42x and -2x to get 40x.
\frac{4x^{2}+40x}{4}=-\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{40}{4}x=-\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+10x=-\frac{8}{4}
Divide 40 by 4.
x^{2}+10x=-2
Divide -8 by 4.
x^{2}+10x+5^{2}=-2+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-2+25
Square 5.
x^{2}+10x+25=23
Add -2 to 25.
\left(x+5\right)^{2}=23
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{23}
Take the square root of both sides of the equation.
x+5=\sqrt{23} x+5=-\sqrt{23}
Simplify.
x=\sqrt{23}-5 x=-\sqrt{23}-5
Subtract 5 from both sides of the equation.
4x^{2}+42x-2x=-8
Subtract 2x from both sides.
4x^{2}+40x=-8
Combine 42x and -2x to get 40x.
4x^{2}+40x+8=0
Add 8 to both sides.
x=\frac{-40±\sqrt{40^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 40 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 4\times 8}}{2\times 4}
Square 40.
x=\frac{-40±\sqrt{1600-16\times 8}}{2\times 4}
Multiply -4 times 4.
x=\frac{-40±\sqrt{1600-128}}{2\times 4}
Multiply -16 times 8.
x=\frac{-40±\sqrt{1472}}{2\times 4}
Add 1600 to -128.
x=\frac{-40±8\sqrt{23}}{2\times 4}
Take the square root of 1472.
x=\frac{-40±8\sqrt{23}}{8}
Multiply 2 times 4.
x=\frac{8\sqrt{23}-40}{8}
Now solve the equation x=\frac{-40±8\sqrt{23}}{8} when ± is plus. Add -40 to 8\sqrt{23}.
x=\sqrt{23}-5
Divide -40+8\sqrt{23} by 8.
x=\frac{-8\sqrt{23}-40}{8}
Now solve the equation x=\frac{-40±8\sqrt{23}}{8} when ± is minus. Subtract 8\sqrt{23} from -40.
x=-\sqrt{23}-5
Divide -40-8\sqrt{23} by 8.
x=\sqrt{23}-5 x=-\sqrt{23}-5
The equation is now solved.
4x^{2}+42x-2x=-8
Subtract 2x from both sides.
4x^{2}+40x=-8
Combine 42x and -2x to get 40x.
\frac{4x^{2}+40x}{4}=-\frac{8}{4}
Divide both sides by 4.
x^{2}+\frac{40}{4}x=-\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+10x=-\frac{8}{4}
Divide 40 by 4.
x^{2}+10x=-2
Divide -8 by 4.
x^{2}+10x+5^{2}=-2+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-2+25
Square 5.
x^{2}+10x+25=23
Add -2 to 25.
\left(x+5\right)^{2}=23
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{23}
Take the square root of both sides of the equation.
x+5=\sqrt{23} x+5=-\sqrt{23}
Simplify.
x=\sqrt{23}-5 x=-\sqrt{23}-5
Subtract 5 from both sides of the equation.