Solve for x (complex solution)
x=-4+3\sqrt{5}i\approx -4+6.708203932i
x=-3\sqrt{5}i-4\approx -4-6.708203932i
Graph
Share
Copied to clipboard
4x^{2}+32x+236=-8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+32x+236-\left(-8\right)=-8-\left(-8\right)
Add 8 to both sides of the equation.
4x^{2}+32x+236-\left(-8\right)=0
Subtracting -8 from itself leaves 0.
4x^{2}+32x+244=0
Subtract -8 from 236.
x=\frac{-32±\sqrt{32^{2}-4\times 4\times 244}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 32 for b, and 244 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 4\times 244}}{2\times 4}
Square 32.
x=\frac{-32±\sqrt{1024-16\times 244}}{2\times 4}
Multiply -4 times 4.
x=\frac{-32±\sqrt{1024-3904}}{2\times 4}
Multiply -16 times 244.
x=\frac{-32±\sqrt{-2880}}{2\times 4}
Add 1024 to -3904.
x=\frac{-32±24\sqrt{5}i}{2\times 4}
Take the square root of -2880.
x=\frac{-32±24\sqrt{5}i}{8}
Multiply 2 times 4.
x=\frac{-32+24\sqrt{5}i}{8}
Now solve the equation x=\frac{-32±24\sqrt{5}i}{8} when ± is plus. Add -32 to 24i\sqrt{5}.
x=-4+3\sqrt{5}i
Divide -32+24i\sqrt{5} by 8.
x=\frac{-24\sqrt{5}i-32}{8}
Now solve the equation x=\frac{-32±24\sqrt{5}i}{8} when ± is minus. Subtract 24i\sqrt{5} from -32.
x=-3\sqrt{5}i-4
Divide -32-24i\sqrt{5} by 8.
x=-4+3\sqrt{5}i x=-3\sqrt{5}i-4
The equation is now solved.
4x^{2}+32x+236=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+32x+236-236=-8-236
Subtract 236 from both sides of the equation.
4x^{2}+32x=-8-236
Subtracting 236 from itself leaves 0.
4x^{2}+32x=-244
Subtract 236 from -8.
\frac{4x^{2}+32x}{4}=-\frac{244}{4}
Divide both sides by 4.
x^{2}+\frac{32}{4}x=-\frac{244}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+8x=-\frac{244}{4}
Divide 32 by 4.
x^{2}+8x=-61
Divide -244 by 4.
x^{2}+8x+4^{2}=-61+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-61+16
Square 4.
x^{2}+8x+16=-45
Add -61 to 16.
\left(x+4\right)^{2}=-45
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-45}
Take the square root of both sides of the equation.
x+4=3\sqrt{5}i x+4=-3\sqrt{5}i
Simplify.
x=-4+3\sqrt{5}i x=-3\sqrt{5}i-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}