Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+3x+1-3=-4x
Subtract 3 from both sides.
4x^{2}+3x-2=-4x
Subtract 3 from 1 to get -2.
4x^{2}+3x-2+4x=0
Add 4x to both sides.
4x^{2}+7x-2=0
Combine 3x and 4x to get 7x.
a+b=7 ab=4\left(-2\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=-1 b=8
The solution is the pair that gives sum 7.
\left(4x^{2}-x\right)+\left(8x-2\right)
Rewrite 4x^{2}+7x-2 as \left(4x^{2}-x\right)+\left(8x-2\right).
x\left(4x-1\right)+2\left(4x-1\right)
Factor out x in the first and 2 in the second group.
\left(4x-1\right)\left(x+2\right)
Factor out common term 4x-1 by using distributive property.
x=\frac{1}{4} x=-2
To find equation solutions, solve 4x-1=0 and x+2=0.
4x^{2}+3x+1-3=-4x
Subtract 3 from both sides.
4x^{2}+3x-2=-4x
Subtract 3 from 1 to get -2.
4x^{2}+3x-2+4x=0
Add 4x to both sides.
4x^{2}+7x-2=0
Combine 3x and 4x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-2\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 7 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 4\left(-2\right)}}{2\times 4}
Square 7.
x=\frac{-7±\sqrt{49-16\left(-2\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-7±\sqrt{49+32}}{2\times 4}
Multiply -16 times -2.
x=\frac{-7±\sqrt{81}}{2\times 4}
Add 49 to 32.
x=\frac{-7±9}{2\times 4}
Take the square root of 81.
x=\frac{-7±9}{8}
Multiply 2 times 4.
x=\frac{2}{8}
Now solve the equation x=\frac{-7±9}{8} when ± is plus. Add -7 to 9.
x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{8}
Now solve the equation x=\frac{-7±9}{8} when ± is minus. Subtract 9 from -7.
x=-2
Divide -16 by 8.
x=\frac{1}{4} x=-2
The equation is now solved.
4x^{2}+3x+1+4x=3
Add 4x to both sides.
4x^{2}+7x+1=3
Combine 3x and 4x to get 7x.
4x^{2}+7x=3-1
Subtract 1 from both sides.
4x^{2}+7x=2
Subtract 1 from 3 to get 2.
\frac{4x^{2}+7x}{4}=\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{7}{4}x=\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{7}{4}x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{1}{2}+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{1}{2}+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{81}{64}
Add \frac{1}{2} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{8}\right)^{2}=\frac{81}{64}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{9}{8} x+\frac{7}{8}=-\frac{9}{8}
Simplify.
x=\frac{1}{4} x=-2
Subtract \frac{7}{8} from both sides of the equation.