Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}=10-29
Subtract 29 from both sides.
4x^{2}=-19
Subtract 29 from 10 to get -19.
x^{2}=-\frac{19}{4}
Divide both sides by 4.
x=\frac{\sqrt{19}i}{2} x=-\frac{\sqrt{19}i}{2}
The equation is now solved.
4x^{2}+29-10=0
Subtract 10 from both sides.
4x^{2}+19=0
Subtract 10 from 29 to get 19.
x=\frac{0±\sqrt{0^{2}-4\times 4\times 19}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\times 19}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\times 19}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{-304}}{2\times 4}
Multiply -16 times 19.
x=\frac{0±4\sqrt{19}i}{2\times 4}
Take the square root of -304.
x=\frac{0±4\sqrt{19}i}{8}
Multiply 2 times 4.
x=\frac{\sqrt{19}i}{2}
Now solve the equation x=\frac{0±4\sqrt{19}i}{8} when ± is plus.
x=-\frac{\sqrt{19}i}{2}
Now solve the equation x=\frac{0±4\sqrt{19}i}{8} when ± is minus.
x=\frac{\sqrt{19}i}{2} x=-\frac{\sqrt{19}i}{2}
The equation is now solved.