Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+28x+49-169=0
Subtract 169 from both sides.
4x^{2}+28x-120=0
Subtract 169 from 49 to get -120.
x^{2}+7x-30=0
Divide both sides by 4.
a+b=7 ab=1\left(-30\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-3 b=10
The solution is the pair that gives sum 7.
\left(x^{2}-3x\right)+\left(10x-30\right)
Rewrite x^{2}+7x-30 as \left(x^{2}-3x\right)+\left(10x-30\right).
x\left(x-3\right)+10\left(x-3\right)
Factor out x in the first and 10 in the second group.
\left(x-3\right)\left(x+10\right)
Factor out common term x-3 by using distributive property.
x=3 x=-10
To find equation solutions, solve x-3=0 and x+10=0.
4x^{2}+28x+49=169
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+28x+49-169=169-169
Subtract 169 from both sides of the equation.
4x^{2}+28x+49-169=0
Subtracting 169 from itself leaves 0.
4x^{2}+28x-120=0
Subtract 169 from 49.
x=\frac{-28±\sqrt{28^{2}-4\times 4\left(-120\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 28 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 4\left(-120\right)}}{2\times 4}
Square 28.
x=\frac{-28±\sqrt{784-16\left(-120\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-28±\sqrt{784+1920}}{2\times 4}
Multiply -16 times -120.
x=\frac{-28±\sqrt{2704}}{2\times 4}
Add 784 to 1920.
x=\frac{-28±52}{2\times 4}
Take the square root of 2704.
x=\frac{-28±52}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{-28±52}{8} when ± is plus. Add -28 to 52.
x=3
Divide 24 by 8.
x=-\frac{80}{8}
Now solve the equation x=\frac{-28±52}{8} when ± is minus. Subtract 52 from -28.
x=-10
Divide -80 by 8.
x=3 x=-10
The equation is now solved.
4x^{2}+28x+49=169
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}+28x+49-49=169-49
Subtract 49 from both sides of the equation.
4x^{2}+28x=169-49
Subtracting 49 from itself leaves 0.
4x^{2}+28x=120
Subtract 49 from 169.
\frac{4x^{2}+28x}{4}=\frac{120}{4}
Divide both sides by 4.
x^{2}+\frac{28}{4}x=\frac{120}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+7x=\frac{120}{4}
Divide 28 by 4.
x^{2}+7x=30
Divide 120 by 4.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=30+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=30+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{169}{4}
Add 30 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{13}{2} x+\frac{7}{2}=-\frac{13}{2}
Simplify.
x=3 x=-10
Subtract \frac{7}{2} from both sides of the equation.